School of Pharmacy and Pharmacology, Griffith University, Queensland, Australia; Quality Use of Medicines Network, Griffith University, Queensland, Australia.
Department of Medical Physics, Cork University Hospital, Wilton, Cork, Ireland.
Prostaglandins Other Lipid Mediat. 2020 Jun;148:106422. doi: 10.1016/j.prostaglandins.2020.106422. Epub 2020 Jan 28.
It is widely accepted that the hypoxic nature of solid tumors contribute to their resistance to radiation therapy. There is increasing evidence that cyclooxygenase-2 (COX-2) contributes to increased resistance of tumors to radiation therapy. Several studies demonstrate that combination of COX-2 selective inhibitors with radiation therapy selectively enhances radio responsiveness of tumor cells. However, the majority of these studies utilised suprapharmacological concentrations under normoxic conditions only. Furthermore, the mechanism by which these agents act remain largely unclear. Therefore, the aim of this study was to determine the impact of COX-2 selective inhibitors on both normoxic and hypoxic radiosensitivity in vitro and the mechanisms underlying this. Because of the close, reciprocal relationship between COX-2 and p53 we investigated their contribution to radioresistance. To achieve this we exposed HeLa, MCF-7 and MeWo cells to the COX-2 selective inhibitor, NS398 (10μM). NS398 (10μM) selectively sensitized hypoxic HeLa and MCF-7 but not MeWo cells to ionising radiation (5 Gy). Furthermore, while knockdown of COX-2 with siRNA did not affect either normoxic radiosensitivity in HeLa cells, the radiosensitisation observed with NS398 was lost suggesting both COX-2 dependent and independent mechanisms. We also show that ionising radiation at 5 Gy results in phosphorylation of p53 at serine 15, a key phosphorylation site for p53-mediated apoptosis, and that hypoxia attenuates this phosphorylation. Attenuated phosphorylation of p53 under hypoxic conditions may therefore contribute to hypoxic radioresistance. We also show that NS398 selectively phosphorylates p53 under hypoxic conditions following irradiation at 5 Gy. p53 phosphorylation could be an underlying mechanism by which this agent and other COX-2 inhibitors sensitize tumors to radiation therapy.
人们普遍认为,实体瘤的低氧本质导致其对放射治疗的抵抗。越来越多的证据表明,环氧化酶-2(COX-2)有助于增加肿瘤对放射治疗的抵抗。几项研究表明,COX-2 选择性抑制剂与放射治疗联合使用可选择性地增强肿瘤细胞对放射的敏感性。然而,这些研究中的大多数仅在常氧条件下使用了超药理学浓度。此外,这些药物作用的机制在很大程度上仍不清楚。因此,本研究旨在确定 COX-2 选择性抑制剂对体外常氧和低氧放射敏感性的影响及其机制。由于 COX-2 和 p53 之间的密切、相互关系,我们研究了它们对放射抵抗的贡献。为了实现这一目标,我们将 HeLa、MCF-7 和 MeWo 细胞暴露于 COX-2 选择性抑制剂 NS398(10μM)中。NS398(10μM)选择性地使缺氧的 HeLa 和 MCF-7 细胞对电离辐射(5Gy)敏感,但对 MeWo 细胞没有作用。此外,虽然 COX-2 的 siRNA 敲低不影响 HeLa 细胞的常氧放射敏感性,但 NS398 观察到的放射增敏作用消失,表明存在 COX-2 依赖性和非依赖性机制。我们还表明,5Gy 的电离辐射导致 p53 在丝氨酸 15 处发生磷酸化,这是 p53 介导凋亡的关键磷酸化位点,而缺氧会减弱这种磷酸化。因此,在低氧条件下 p53 的磷酸化减弱可能导致低氧放射抵抗。我们还表明,NS398 在 5Gy 照射后在低氧条件下选择性地使 p53 磷酸化。p53 磷酸化可能是该药物和其他 COX-2 抑制剂使肿瘤对放射治疗敏感的潜在机制。