Suppr超能文献

选择针对炎症性脑血管的纳米医学,以增强血脑屏障。

Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier.

机构信息

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3405-3414. doi: 10.1073/pnas.1912012117. Epub 2020 Jan 31.

Abstract

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.

摘要

针对炎症性脑病理,如中风和创伤性脑损伤的药物靶向仍然是一个难以实现的目标。使用局部肿瘤坏死因子 α(TNFα)诱导的急性脑炎症小鼠模型,我们发现,在炎症大脑中,静脉注射的血管细胞粘附分子 1(抗-VCAM)抗体的摄取量是转铁蛋白受体 1(TfR-1)和细胞间粘附分子 1(ICAM-1)抗体的摄取量的 10 倍以上。此外,抗-VCAM/脂质体的摄取量分别比抗-TfR 和抗-ICAM 对应物高 27 倍和 8 倍,达到脑/血比高于 IgG/脂质体 300 倍以上。单光子发射计算机断层扫描成像证实了抗-VCAM/脂质体在小鼠炎症大脑中的特异性靶向。通过颅窗和流式细胞术的活体显微镜检查显示,在炎症大脑中,抗-VCAM/脂质体与内皮结合,而不是与白细胞结合。抗-VCAM/LNP 选择性地在炎症大脑中积累,为货物信使 RNA(mRNA)编码的蛋白质提供新的表达。抗-VCAM/LNP-mRNA 表达血栓调节蛋白(一种天然的内皮抑制物,可抑制血栓形成、炎症和血管渗漏),减轻 TNFα 诱导的脑水肿。因此,VCAM 导向的纳米载体为炎症性脑的血管靶向提供了一个平台,其目标是使血脑屏障的完整性正常化,从而有益于多种脑病理。

相似文献

1
Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3405-3414. doi: 10.1073/pnas.1912012117. Epub 2020 Jan 31.
6
Targeting lipid nanoparticles to the blood-brain barrier to ameliorate acute ischemic stroke.
Mol Ther. 2024 May 1;32(5):1344-1358. doi: 10.1016/j.ymthe.2024.03.004. Epub 2024 Mar 7.
8
Targeting of nanoparticles to the cerebral vasculature after traumatic brain injury.
PLoS One. 2024 Jun 10;19(6):e0297451. doi: 10.1371/journal.pone.0297451. eCollection 2024.

引用本文的文献

1
Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy.
Drug Deliv Transl Res. 2025 Jun 14. doi: 10.1007/s13346-025-01887-9.
3
Harnessing synaptic vesicle release and recycling with antibody shuttle for targeted delivery of therapeutics to neurons.
Mol Ther Methods Clin Dev. 2025 Apr 19;33(2):101476. doi: 10.1016/j.omtm.2025.101476. eCollection 2025 Jun 12.
5
Endothelial -targeted CD39 is protective in a mouse model of global forebrain ischaemia.
J Neuroinflammation. 2025 Apr 21;22(1):115. doi: 10.1186/s12974-025-03394-7.
6
Engineering Lipid Nanoparticles for mRNA Immunotherapy.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Mar-Apr;17(2):e70007. doi: 10.1002/wnan.70007.
7
Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases.
Pharmaceutics. 2025 Feb 20;17(3):281. doi: 10.3390/pharmaceutics17030281.
8
Developing mRNA Nanomedicines with Advanced Targeting Functions.
Nanomicro Lett. 2025 Feb 21;17(1):155. doi: 10.1007/s40820-025-01665-9.
9
Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies.
Int J Nanomedicine. 2025 Feb 4;20:1443-1490. doi: 10.2147/IJN.S457393. eCollection 2025.
10
Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment.
Adv Sci (Weinh). 2025 Mar;12(10):e2413367. doi: 10.1002/advs.202413367. Epub 2025 Jan 24.

本文引用的文献

1
Blood-Brain Barrier: From Physiology to Disease and Back.
Physiol Rev. 2019 Jan 1;99(1):21-78. doi: 10.1152/physrev.00050.2017.
2
Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude.
Nat Commun. 2018 Jul 11;9(1):2684. doi: 10.1038/s41467-018-05079-7.
3
Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles.
Adv Mater. 2018 Aug;30(32):e1802373. doi: 10.1002/adma.201802373. Epub 2018 Jun 28.
4
Exploring traditional and nontraditional roles for thrombomodulin.
Blood. 2018 Jul 12;132(2):148-158. doi: 10.1182/blood-2017-12-768994. Epub 2018 Jun 4.
5
Activated protein C, protease activated receptor 1, and neuroprotection.
Blood. 2018 Jul 12;132(2):159-169. doi: 10.1182/blood-2018-02-769026. Epub 2018 Jun 4.
6
Endothelium-targeted delivery of dexamethasone by anti-VCAM-1 SAINT-O-Somes in mouse endotoxemia.
PLoS One. 2018 May 15;13(5):e0196976. doi: 10.1371/journal.pone.0196976. eCollection 2018.
9
Targeting therapeutics to endothelium: are we there yet?
Drug Deliv Transl Res. 2018 Aug;8(4):883-902. doi: 10.1007/s13346-017-0464-6.
10
Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10281-E10290. doi: 10.1073/pnas.1713328114. Epub 2017 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验