Health Innovation and Evaluation Hub, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada.
Chemical and Biological Hazards Prevention, Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada.
Ann Work Expo Health. 2020 Apr 30;64(4):402-415. doi: 10.1093/annweh/wxaa008.
The occupational environment represents an important source of exposures to multiplehazards for workers' health. Although it is recognized that mixtures of agents may have differenteffects on health compared to their individual effects, studies generally focus on the assessment ofindividual exposures. Our objective was to identify occupational co-exposures occurring in the United States using the multi-industry occupational exposure databank of the Occupational Safety and Health Administration (OSHA).
Using OSHA's Integrated Management Information System (IMIS), measurement data from workplace inspections occurring from 1979 to 2015 were examined. We defined a workplace situation (WS) by grouping measurements that occurred within a company, within the same occupation (i.e. job title) within 1 year. All agents present in each WS were listed and the resulting databank was analyzed with the Spectrosome approach, a methodology inspired by network science, to determine global patterns of co-exposures. The presence of an agent in a WS was defined either as detected, or measured above 20% of a relevant occupational exposure limit (OEL).
Among the 334 648 detected exposure measurements of 105 distinct agents collected from 14 513 US companies, we identified 125 551 WSs, with 31% involving co-exposure. Fifty-eight agents were detected with others in >50% of WSs, 29 with a proportion >80%. Two clusters were highlighted, one for solvents and one for metals. Toluene, xylene, acetone, hexone, 2-butanone, and N-butyl acetate formed the basis of the solvent cluster. The main agents of the metal cluster were zinc, iron, lead, copper, manganese, nickel, cadmium, and chromium. 68 556 WS were included in the analyses based on levels of exposure above 20% of their OEL, with 12.4% of co-exposure. In this analysis, while the metal cluster remained, only the combinations of toluene with xylene or 2-butanone were frequently observed among solvents. An online web application allows the examination of industry specific patterns.
We identified frequent co-exposure situations in the IMIS databank. Using the spectrome approach, we revealed global combination patterns and the agents most often implicated. Future work should endeavor to explore the toxicological effects of prevalent combinations of exposures on workers' health to prioritize research and prevention efforts.
职业环境是工人健康所面临的多种危害的重要来源。虽然人们已经认识到,与单一物质的暴露相比,混合物可能会对健康产生不同的影响,但研究通常侧重于个体暴露的评估。我们的目标是使用职业安全与健康管理局(OSHA)的多行业职业暴露数据库来识别美国职业场所中发生的共同暴露。
利用 OSHA 的综合管理信息系统(IMIS),对 1979 年至 2015 年期间进行的工作场所检查的测量数据进行了检查。我们通过将在同一家公司、同一种职业(即工作岗位)和 1 年内发生的测量数据分组,来定义一个工作场所情况(WS)。列出每个 WS 中存在的所有物质,并使用 Spectrosome 方法对由此产生的数据库进行分析,该方法受到网络科学的启发,用于确定共同暴露的全局模式。WS 中物质的存在定义为检测到的物质,或者测量值超过相关职业暴露限值(OEL)的 20%。
在从 14513 家美国公司收集的 105 种不同物质的 334648 个检测到的暴露测量值中,我们确定了 125551 个 WS,其中 31%涉及共同暴露。有 58 种物质在超过 50%的 WS 中与其他物质共同被检测到,有 29 种物质的比例超过 80%。两个聚类被突出显示,一个是溶剂,另一个是金属。甲苯、二甲苯、丙酮、己酮、2-丁酮和 N-丁基醋酸盐构成了溶剂聚类的基础。金属聚类的主要物质是锌、铁、铅、铜、锰、镍、镉和铬。在基于暴露水平超过其 OEL 的 20%的分析中,包括了 68556 个 WS,其中 12.4%为共同暴露。在这项分析中,虽然金属聚类仍然存在,但在溶剂中,只有甲苯与二甲苯或 2-丁酮的组合经常被观察到。一个在线网络应用程序允许检查特定行业的模式。
我们在 IMIS 数据库中确定了频繁发生的共同暴露情况。使用光谱方法,我们揭示了全球组合模式和最常涉及的物质。未来的工作应该努力探索常见暴露组合对工人健康的毒理学影响,以便为研究和预防工作确定优先事项。