Suppr超能文献

路径积分的小矩阵解缠:克服随记忆长度呈指数增长的张量规模。

Small matrix disentanglement of the path integral: Overcoming the exponential tensor scaling with memory length.

作者信息

Makri Nancy

机构信息

Departments of Chemistry and Physics, University of Illinois, 505 S. Mathews Avenue, Urbana, Illinois 61801, USA.

出版信息

J Chem Phys. 2020 Jan 31;152(4):041104. doi: 10.1063/1.5139473.

Abstract

The discretized path integral expression for the reduced density matrix (RDM) of a system interacting with a dissipative harmonic bath is fully entangled because of influence functional terms that couple the variables at different time points. The iterative decomposition of the path integral, which exploits the finite length of influence functional memory, involves a tensor propagator whose size grows exponentially with the memory length. The present Communication disentangles the path integral by recursively spreading the temporal entanglement over longer path segments, while decreasing its contribution. Eventually, the entangled term becomes sufficiently small and may be neglected, leading to iterative propagation of the RDM through simple multiplication of matrices whose size is equal to that of the bare system. It is found that the temporal entanglement length is practically equal to the bath-induced memory length. The small matrix decomposition of the path integral (SMatPI) is stable and very efficient, extending the applicability of numerically exact real-time path integral methods to multi-state systems.

摘要

对于与耗散性谐振子浴相互作用的系统,其约化密度矩阵(RDM)的离散路径积分表达式由于存在耦合不同时间点变量的影响泛函项而完全纠缠。路径积分的迭代分解利用了影响泛函记忆的有限长度,涉及一个张量传播子,其大小随记忆长度呈指数增长。本通讯通过在更长的路径段上递归地分散时间纠缠,同时减小其贡献,从而解开路径积分。最终,纠缠项变得足够小,可以忽略不计,导致RDM通过大小与裸系统相同的矩阵的简单乘法进行迭代传播。结果发现,时间纠缠长度实际上等于浴诱导的记忆长度。路径积分的小矩阵分解(SMatPI)是稳定且非常有效的,将数值精确实时路径积分方法的适用性扩展到多态系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验