Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
J Plant Physiol. 2020 Mar-Apr;246-247:153127. doi: 10.1016/j.jplph.2020.153127. Epub 2020 Jan 23.
Ca acts as a universal second messenger in eukaryotes. In animals, a wide variety of environmental and developmental stimuli trigger Ca dynamics in organelles, such as the cytoplasm, nucleus, and endoplasmic reticulum (ER). However, ER Ca ([Ca]) homeostasis and its contributions in cytosolic and/or nucleosolic Ca dynamics in plants remain elusive. GCaMPs are comprised of a circularly permutated form of enhanced green fluorescent protein fused to calmodulin and myosin light-chain kinase M13 and used for monitoring Ca dynamics in mammalian cells. Here, we targeted a high-affinity variant of GCaMP with nuclear export signal in the cytoplasm (NES-GCaMP6m), with a nuclear-localised signal in the nucleus (NLS-GCaMP6m), and a low-affinity variant of GCaMP, also known as calcium-measuring organelle-entrapped protein indicators (CEPIA), with a signal peptide sequence of the ER-localised protein Calreticulin 1a in the ER lumen (CRT1a-R-CEPIA1er) for intraorganellar Ca imaging in Arabidopsis. We found that cytosolic Ca ([Ca]) increases induced by 250 mM sorbitol as an osmotic stress stimulus, 50 μM abscisic acid (ABA), or 1 mM carbachol (CCh) were mainly due to extracellular Ca influx, whereas nucleosolic Ca ([Ca]) increases triggered by osmotic stress, ABA, or CCh were contributed by [Ca] release. In addition, [Ca] dynamics presented specific patterns in response to different stimuli such as osmotic stress, ABA, or CCh, indicating that Ca signalling occurs in the ER in plants. These results provide valuable insights into subcellular Ca dynamics in response to different stresses in Arabidopsis root cells and prove that GCaMP imaging is a useful tool for furthering our understanding of plant organelle functions.
Ca 作为真核生物中的通用第二信使。在动物中,各种环境和发育刺激会触发细胞器(如细胞质、核和内质网(ER))中的 Ca 动力学。然而,植物中 ER Ca([Ca])稳态及其对细胞质和/或核质 Ca 动力学的贡献仍不清楚。GCaMPs 由环状排列的增强型绿色荧光蛋白与钙调蛋白和肌球蛋白轻链激酶 M13 融合而成,用于监测哺乳动物细胞中的 Ca 动力学。在这里,我们将一种带有细胞质中核输出信号的高亲和力 GCaMP 变体(NES-GCaMP6m)、核内带有核定位信号的 GCaMP 变体(NLS-GCaMP6m)和一种低亲和力 GCaMP 变体(也称为钙测量细胞器捕获蛋白指示剂(CEPIA))靶向内质网腔中的内质网定位蛋白钙结合蛋白 1a 的信号肽序列(CRT1a-R-CEPIA1er),用于拟南芥的细胞器内 Ca 成像。我们发现,由 250mM 山梨醇作为渗透胁迫刺激、50μM 脱落酸(ABA)或 1mM 卡巴胆碱(CCh)诱导的细胞质 Ca([Ca])增加主要是由于细胞外 Ca 内流,而由渗透胁迫、ABA 或 CCh 触发的核质 Ca([Ca])增加则由[Ca]释放贡献。此外,[Ca]动力学对不同刺激(如渗透胁迫、ABA 或 CCh)表现出特定的模式,表明 Ca 信号发生在植物的内质网中。这些结果为拟南芥根细胞对不同应激的亚细胞 Ca 动力学提供了有价值的见解,并证明 GCaMP 成像对于进一步了解植物细胞器功能是有用的工具。