Zhang Wenhao, Mohamed Abdul Rahman, Ong Wee-Jun
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia.
Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Pulau Pinang, Malaysia.
Angew Chem Int Ed Engl. 2020 Dec 14;59(51):22894-22915. doi: 10.1002/anie.201914925. Epub 2020 Oct 27.
Transforming CO into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
利用阳光将一氧化碳转化为燃料有望同步解决全球变暖和能源供应问题。设计具有诸如强大的光捕获能力、强氧化还原电位、高电荷分离率和出色耐久性等有趣特性的高效光催化剂至关重要。迄今为止,单组分光催化剂无法同时满足所有这些标准。受自然光合作用的启发,构建人工Z型光催化剂为克服这些瓶颈提供了一种简便方法。在这篇综述中,我们首先介绍光催化一氧化碳还原和Z型体系的基本原理。此后,我们讨论了最先进的Z型光催化一氧化碳还原,特别关注影响光活性的主要因素。此外,还综述了对高效光催化很重要的进一步改性。