Suppr超能文献

可漂浮人工叶用于将耐氧一氧化碳转化与水净化相结合。

Floatable artificial leaf to couple oxygen-tolerant CO conversion with water purification.

作者信息

Zhang Zhiyong, Wang Yang, Xie Yangen, Tsukamoto Toru, Zhao Qi, Huang Qing, Huang Xingmiao, Zhang Boyang, Song Wenjing, Chen Chuncheng, Sheng Hua, Zhao Jincai

机构信息

Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, PR China.

University of Chinese Academy of Sciences, Beijing, PR China.

出版信息

Nat Commun. 2025 Jan 2;16(1):274. doi: 10.1038/s41467-024-55753-2.

Abstract

To enable open environment application of artificial photosynthesis, the direct utilization of environmental CO via an oxygen-tolerant reductive procedure is necessary. Herein, we introduce an in situ growth strategy for fabricating two-dimensional heterojunctions between indium porphyrin metal-organic framework (In-MOF) and single-layer graphene oxide (GO). Upon illumination, the In-MOF/GO heterostructure facilitates a tandem CO capture and photocatalytic reduction on its hydroxylated In-node, prioritizing the reduction of dilute CO even in the presence of air-level O. The In-MOF/GO heterostructure photocatalyst is integrated with a porous polytetrafluoroethylene (PTFE) membrane to construct a floatable artificial leaf. Through a triphase photocatalytic reaction, the floatable artificial leaf can remove aqueous contaminants from real water while efficiently reducing CO at low concentrations (10%, approximately the CO concentration in combustion flue gases) upon air-level O. This study provides a scalable approach for the construction of photocatalytic devices for CO conversion in open environments.

摘要

为了实现人工光合作用在开放环境中的应用,通过耐氧还原过程直接利用环境中的CO是必要的。在此,我们介绍一种原位生长策略,用于在铟卟啉金属有机框架(In-MOF)和单层氧化石墨烯(GO)之间制备二维异质结。光照下,In-MOF/GO异质结构在其羟基化的In节点上促进串联CO捕获和光催化还原,即使在存在空气水平的O时也优先还原稀CO。In-MOF/GO异质结构光催化剂与多孔聚四氟乙烯(PTFE)膜集成,构建了一种可漂浮的人工叶片。通过三相光催化反应,这种可漂浮的人工叶片可以去除实际水中的污染物,同时在空气水平的O存在下,以低浓度(10%,近似燃烧烟道气中的CO浓度)有效还原CO。本研究为在开放环境中构建用于CO转化的光催化装置提供了一种可扩展的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb76/11696042/8cc3a7e3dd15/41467_2024_55753_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验