Suppr超能文献

使用静息态功能磁共振成像连接性和脑电图微状态评估神经团块模型的静息时空动力学

Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates.

作者信息

Endo Hidenori, Hiroe Nobuo, Yamashita Okito

机构信息

Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan.

ATR Neural Information Analysis Laboratories, Kyoto, Japan.

出版信息

Front Comput Neurosci. 2020 Jan 17;13:91. doi: 10.3389/fncom.2019.00091. eCollection 2019.

Abstract

Resting-state brain activities have been extensively investigated to understand the macro-scale network architecture of the human brain using non-invasive imaging methods such as fMRI, EEG, and MEG. Previous studies revealed a mechanistic origin of resting-state networks (RSNs) using the connectome dynamics modeling approach, where the neural mass dynamics model constrained by the structural connectivity is simulated to replicate the resting-state networks measured with fMRI and/or fast synchronization transitions with EEG/MEG. However, there is still little understanding of the relationship between the slow fluctuations measured with fMRI and the fast synchronization transitions with EEG/MEG. In this study, as a first step toward evaluating experimental evidence of resting state activity at two different time scales but in a unified way, we investigate connectome dynamics models that simultaneously explain resting-state functional connectivity (rsFC) and EEG microstates. Here, we introduce empirical rsFC and microstates as evaluation criteria of simulated neuronal dynamics obtained by the Larter-Breakspear model in one cortical region connected with those in other cortical regions based on structural connectivity. We optimized the global coupling strength and the local gain parameter (variance of the excitatory and inhibitory threshold) of the simulated neuronal dynamics by fitting both rsFC and microstate spatial patterns to those of experimental ones. As a result, we found that simulated neuronal dynamics in a narrow optimal parameter range simultaneously reproduced empirical rsFC and microstates. Two parameter groups had different inter-regional interdependence. One type of dynamics was synchronized across the whole brain region, and the other type was synchronized between brain regions with strong structural connectivity. In other words, both fast synchronization transitions and slow BOLD fluctuation changed based on structural connectivity in the two parameter groups. Empirical microstates were similar to simulated microstates in the two parameter groups. Thus, fast synchronization transitions correlated with slow BOLD fluctuation based on structural connectivity yielded characteristics of microstates. Our results demonstrate that a bottom-up approach, which extends the single neuronal dynamics model based on empirical observations into a neural mass dynamics model and integrates structural connectivity, effectively reveals both macroscopic fast, and slow resting-state network dynamics.

摘要

静息态脑活动已被广泛研究,以使用功能磁共振成像(fMRI)、脑电图(EEG)和脑磁图(MEG)等非侵入性成像方法来理解人类大脑的宏观网络结构。先前的研究使用连接组动力学建模方法揭示了静息态网络(RSNs)的机制起源,其中受结构连接性约束的神经团动力学模型被模拟,以复制通过fMRI测量的静息态网络和/或通过EEG/MEG的快速同步转变。然而,对于用fMRI测量的缓慢波动与用EEG/MEG的快速同步转变之间的关系仍知之甚少。在本研究中,作为以统一方式评估两个不同时间尺度的静息态活动实验证据的第一步,我们研究了同时解释静息态功能连接性(rsFC)和EEG微状态的连接组动力学模型。在这里,我们引入经验性rsFC和微状态作为基于结构连接性在一个皮质区域与其他皮质区域相连的模拟神经元动力学的评估标准。我们通过将rsFC和微状态空间模式与实验模式进行拟合,优化了模拟神经元动力学的全局耦合强度和局部增益参数(兴奋性和抑制性阈值的方差)。结果,我们发现在狭窄的最佳参数范围内,模拟神经元动力学同时再现了经验性rsFC和微状态。两组参数具有不同的区域间相互依赖性。一种动力学类型在整个脑区同步,另一种动力学类型在具有强结构连接性的脑区之间同步。换句话说,在两组参数中,快速同步转变和缓慢的血氧水平依赖(BOLD)波动都基于结构连接性而变化。经验性微状态与两组参数中的模拟微状态相似。因此,基于结构连接性的快速同步转变与缓慢的BOLD波动相关,产生了微状态的特征。我们的结果表明,一种自下而上的方法,即将基于经验观察的单个神经元动力学模型扩展为神经团动力学模型并整合结构连接性,有效地揭示了宏观的快速和缓慢静息态网络动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0232/6978716/4caa440e6e85/fncom-13-00091-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验