文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用脑网络建模推断多尺度神经机制。

Inferring multi-scale neural mechanisms with brain network modelling.

作者信息

Schirner Michael, McIntosh Anthony Randal, Jirsa Viktor, Deco Gustavo, Ritter Petra

机构信息

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany.

Berlin Institute of Health (BIH), Berlin, Germany.

出版信息

Elife. 2018 Jan 8;7:e28927. doi: 10.7554/eLife.28927.


DOI:10.7554/eLife.28927
PMID:29308767
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5802851/
Abstract

The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies.

摘要

非侵入性脑活动测量背后的神经生理过程尚未完全被理解。在此,我们开发了一种基于连接组的脑网络模型,该模型将个体的结构和功能数据与神经群体动力学相结合,以支持多尺度神经生理推断。模拟群体通过结构连接性相互关联,并且新颖的是,由脑电图(EEG)源活动驱动。模拟不仅预测了受试者在20分钟活动期间的个体静息态功能磁共振成像(fMRI)时间序列和空间网络拓扑结构,更重要的是,它们还揭示了精确的神经生理机制,这些机制构成并连接了来自不同尺度和模态的六个实证观察结果:(1)静息态fMRI振荡,(2)功能连接网络,(3)兴奋 - 抑制平衡,(4,5)α节律、脉冲发放与fMRI在短时间和长时间尺度上的反比关系,以及(6)fMRI幂律缩放。这些发现强调了这种新的建模框架在神经生理知识的一般推断和整合方面的潜力,以补充实证研究。

相似文献

[1]
Inferring multi-scale neural mechanisms with brain network modelling.

Elife. 2018-1-8

[2]
Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.

Neuroimage. 2017-8-24

[3]
A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates.

Neuroimage. 2018-10-1

[4]
Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks.

Neuroimage. 2018-12-6

[5]
Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study.

Physiol Meas. 2011-10-25

[6]
Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

PLoS One. 2011-9-22

[7]
Brain organization into resting state networks emerges at criticality on a model of the human connectome.

Phys Rev Lett. 2013-4-22

[8]
Changes in structural and functional connectivity among resting-state networks across the human lifespan.

Neuroimage. 2014-11-15

[9]
Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.

PLoS Comput Biol. 2021-1

[10]
Mathematical framework for large-scale brain network modeling in The Virtual Brain.

Neuroimage. 2015-1-13

引用本文的文献

[1]
A multi-frequency whole-brain neural mass model with homeostatic feedback inhibition.

bioRxiv. 2025-8-31

[2]
Dynamic network features of functional and structural brain networks support visual working memory in aging adults.

Imaging Neurosci (Camb). 2025-5-22

[3]
Computational modelling reveals neurobiological contributions to static and dynamic functional connectivity patterns.

Front Comput Neurosci. 2025-7-29

[4]
Using an ordinary differential equation model to separate rest and task signals in fMRI.

Nat Commun. 2025-8-3

[5]
Computational Neuroscience's Influence on Autism Neuro-Transmission Research: Mapping Serotonin, Dopamine, GABA, and Glutamate.

Biomedicines. 2025-6-10

[6]
Effective workflow from multimodal MRI data to model-based prediction.

Sci Rep. 2025-6-20

[7]
Adolescent maturation of cortical excitation-inhibition ratio based on individualized biophysical network modeling.

Sci Adv. 2025-6-6

[8]
Exploring dynamical whole-brain models in high-dimensional parameter spaces.

PLoS One. 2025-5-12

[9]
A comprehensive investigation of intracortical and corticothalamic models of the alpha rhythm.

PLoS Comput Biol. 2025-4-10

[10]
Spatial (mis)match between EEG and fMRI signal patterns revealed by spatio-spectral source-space EEG decomposition.

Front Neurosci. 2025-3-14

本文引用的文献

[1]
Dynamic models of large-scale brain activity.

Nat Neurosci. 2017-2-23

[2]
Sources and implications of whole-brain fMRI signals in humans.

Neuroimage. 2017-2-1

[3]
Millisecond Coupling of Local Field Potentials to Synaptic Currents in the Awake Visual Cortex.

Neuron. 2016-4-6

[4]
Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex.

Sci Rep. 2016-3-16

[5]
Model selection for identifying power-law scaling.

Neuroimage. 2016-8-1

[6]
Rhythms for Cognition: Communication through Coherence.

Neuron. 2015-10-7

[7]
An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.

Neuroimage. 2015-3-31

[8]
Mathematical framework for large-scale brain network modeling in The Virtual Brain.

Neuroimage. 2015-1-13

[9]
Self-organized criticality as a fundamental property of neural systems.

Front Syst Neurosci. 2014-9-23

[10]
Modern network science of neurological disorders.

Nat Rev Neurosci. 2014-9-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索