Suppr超能文献

皮肤表皮交界处的多光子显微镜检查及利用深度学习自动识别发育异常组织。

Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning.

作者信息

Huttunen Mikko J, Hristu Radu, Dumitru Adrian, Floroiu Iustin, Costache Mariana, Stanciu Stefan G

机构信息

Photonics Laboratory, Physics Unit, Tampere University, Tampere, Finland.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2019 Dec 10;11(1):186-199. doi: 10.1364/BOE.11.000186. eCollection 2020 Jan 1.

Abstract

Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both or . Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.

摘要

由训练有素的专家进行的组织病理学图像分析目前被视为包括癌症在内的许多疾病诊断的金标准。然而,这种方法费力、耗时,且存在偏差或人为错误的风险。因此,显然需要更快、侵入性更小且更准确的诊断解决方案,同时也需要最少的人工干预。多光子显微镜(MPM)可以通过利用各种内源性光学信号来提供反映组织结构和组成的虚拟活检,从而缓解传统组织病理学特有的一些缺点。在这里,我们表明,在未染色的固定组织中对真皮表皮交界处(DEJ)进行MPM成像为组织病理学家识别非黑色素瘤皮肤癌的发病提供了有用的线索。此外,我们表明,在DEJ上收集的MPM图像,除了易于训练有素的专家解读外,还可以使用深度学习方法和现有的预训练卷积神经网络高精度地自动分类为健康和发育异常类别。我们的结果表明,深度学习增强的MPM用于皮肤癌筛查可以促进及时诊断和干预,从而实现更优化的治疗方法。

相似文献

引用本文的文献

2
Roadmap on Label-Free Super-Resolution Imaging.无标记超分辨率成像路线图
Laser Photon Rev. 2023 Dec;17(12). doi: 10.1002/lpor.202200029. Epub 2023 Oct 30.
6
Assessment of Extramammary Paget Disease by Two-Photon Microscopy.双光子显微镜对乳腺外佩吉特病的评估
Front Med (Lausanne). 2022 Feb 25;9:839786. doi: 10.3389/fmed.2022.839786. eCollection 2022.

本文引用的文献

2
Machine Learning in Medicine.医学中的机器学习
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
6
Deep learning in biomedicine.深度学习在生物医学中的应用。
Nat Biotechnol. 2018 Oct;36(9):829-838. doi: 10.1038/nbt.4233. Epub 2018 Sep 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验