Chen Chaoliang, Shi Weisong, Ramjist Joel, Yang Victor X D
Biophotonics and Bioengineering Lab, Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Ontario, Canada.
Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
Biomed Opt Express. 2019 Dec 11;11(1):227-239. doi: 10.1364/BOE.380287. eCollection 2020 Jan 1.
We previously proposed a Gabor optical coherence tomography angiography (GOCTA) algorithm for spectral domain optical coherence tomography (SDOCT) to extract microvascular signals from spectral fringes directly, with speed improvement of 4 to 20 times over existing methods. In this manuscript, we explored the theoretical basis of GOCTA with comparison of experimental data using solid and liquid displacement sample targets, demonstrating that the majority of the GOCTA sensitivity advantage over speckle variance based techniques was in the small displacement range (< 10 ∼ 20 µm) of the moving target (such as red blood cells). We further normalized GOCTA signal by root-mean-square (RMS) of original fringes, achieving a more uniform image quality, especially at edges of blood vessels where slow flow could occur. Furthermore, by transecting the spectral fringes and using skipped convolution, the data processing speed could be further improved. We quantified the trade-off in signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) under various sub-spectral bands and found an optimized condition using 1/4 spectral band for minimal angiography image quality degradation, yet achieving a further 26.7 and 34 times speed improvement on GPU and CPU, respectively. Our optimized GOCTA algorithm has a speed advantage of over 140 times compared to existing speckle variance OCT (SVOCT) method.
我们之前提出了一种用于光谱域光学相干断层扫描(SDOCT)的加博尔光学相干断层扫描血管造影(GOCTA)算法,可直接从光谱条纹中提取微血管信号,与现有方法相比速度提高了4至20倍。在本论文中,我们通过使用固体和液体位移样本目标比较实验数据,探索了GOCTA的理论基础,证明了GOCTA相对于基于散斑方差技术的大部分灵敏度优势在于移动目标(如红细胞)的小位移范围(<10 ∼ 20 µm)。我们进一步通过原始条纹的均方根(RMS)对GOCTA信号进行归一化,实现了更均匀的图像质量,特别是在可能出现缓慢血流的血管边缘。此外,通过截断光谱条纹并使用跳跃卷积,可以进一步提高数据处理速度。我们量化了在各种子光谱带下信号噪声比(SNR)和对比度噪声比(CNR)之间的权衡,并找到了使用1/4光谱带的优化条件,以实现最小的血管造影图像质量下降,同时在GPU和CPU上分别实现了进一步26.7倍和34倍的速度提升。我们优化的GOCTA算法与现有的散斑方差光学相干断层扫描(SVOCT)方法相比,具有超过140倍的速度优势。