Suppr超能文献

基于可扩展宽场光学相干断层扫描的血管造影术用于体内成像应用。

Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications.

作者信息

Xu Jingjiang, Wei Wei, Song Shaozhen, Qi Xiaoli, Wang Ruikang K

机构信息

University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA.

出版信息

Biomed Opt Express. 2016 Apr 18;7(5):1905-19. doi: 10.1364/BOE.7.001905. eCollection 2016 May 1.

Abstract

Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm(2)), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm(2). Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications.

摘要

基于光学相干断层扫描(OCT)的血管造影技术的最新进展已在涉及血管的疾病诊断和治疗监测中展示了多种生物医学应用。尽管前景广阔,但其成像视野(FOV)仍然有限(通常小于9平方毫米),这在一定程度上减缓了其临床应用的普及。在本文中,我们报告了一种工作在1310纳米的高速光谱域OCT,以实现高达750平方毫米的宽视野。使用光学微血管造影(OMAG)算法,我们能够绘制活生物组织内的血管网络。得益于工作在147千赫兹扫描速率的2048像素阵列线扫描铟镓砷相机,该系统的探测深度约为7.5毫米,并在单次数据采集时提供基于宽视野OCT的血管造影。我们在OCT系统中实现了两种成像模式(即宽视野模式和高分辨率模式),可提供具有灵活横向分辨率的高度可扩展视野。我们展示了在单次三维扫描中对人类多个指甲床和保留颅骨的小鼠全脑进行可扩展的宽视野血管成像,为基于宽视野OCT的血管造影在许多临床应用中带来了新机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd84/4871090/c6777114aa1c/boe-7-5-1905-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验