Gorynski C, Anselmi-Tamburini U, Winterer M
Nanoparticle Process Technology, Department of Mechanical Engineering and CENIDE, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany.
Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy.
Rev Sci Instrum. 2020 Jan 1;91(1):015112. doi: 10.1063/1.5119059.
A facile method is described to couple flash sintering (FS) and spark plasma sintering (SPS). Flash spark plasma sintering (FSPS) combines advantages of both techniques: the use of pellet-shaped samples under mechanical load with the controlled passage of electric current through the sample. FSPS is realized by partially replacing graphite pressing tools (two punches and one matrix) used in standard SPS. An insulating boron nitride matrix substitutes the conducting graphite matrix to force the electric current through the sample. Additionally, external heating of the boron nitride matrix is implemented. Microstructures of standard and flash-SPS are compared using aluminum doped zinc oxide as an example. Scanning electron microscopy reveals that different microstructures are generated for SPS and FSPS. The new setups provide novel processing routes for different current sintering methods of materials under mechanical load and assist in identifying the role of the electric current or field in the microstructure.
本文描述了一种将快速烧结(FS)和放电等离子烧结(SPS)相结合的简便方法。闪光电热等离子烧结(FSPS)结合了这两种技术的优点:在机械负载下使用颗粒状样品,并控制电流通过样品。FSPS是通过部分替换标准SPS中使用的石墨压制工具(两个冲头和一个模具)来实现的。绝缘的氮化硼模具替代了导电的石墨模具,以迫使电流通过样品。此外,还对氮化硼模具进行外部加热。以掺铝氧化锌为例,比较了标准SPS和快速SPS的微观结构。扫描电子显微镜显示,SPS和FSPS产生了不同的微观结构。这些新装置为在机械负载下对材料进行不同的电流烧结方法提供了新的加工途径,并有助于确定电流或电场在微观结构中的作用。