Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom.
Nano Lett. 2020 Mar 11;20(3):1536-1541. doi: 10.1021/acs.nanolett.9b03871. Epub 2020 Feb 13.
Highly efficient information processing in the brain is based on processing and memory components called synapses, whose output is dependent on the history of the signals passed through them. Here, we have developed an artificial synapse with both electrical and optical memory effects using chemical transformations in plasmonic tunnel junctions. In an electronic implementation, the electrons tunneled into plasmonic nanorods under a low bias voltage are harvested to write information into the tunnel junctions via hot-electron-mediated chemical reactions with the environment. In an optical realization, the information can be written by an external light illumination to excite hot electrons in the plasmonic nanorods. The stored information is nonvolatile and can be read either electrically or optically by measuring the resistance or inelastic-tunneling-induced light emission, respectively. The described architecture provides a high density (∼10 cm) of memristive optoelectronic devices which can be used as multilevel nonvolatile memory, logic units, or artificial synapses in future electronic, optoelectronic, and artificial neural networks.
大脑中高效的信息处理基于称为突触的处理和记忆组件,其输出取决于通过它们传递的信号的历史。在这里,我们使用等离子体隧道结中的化学转化,开发了具有电和光存储效应的人工突触。在电子实现中,在低偏置电压下隧穿到等离子体纳米棒中的电子被收集,通过与环境的热电子介导的化学反应,将信息写入隧道结中。在光学实现中,信息可以通过外部光照射写入,以激发等离子体纳米棒中的热电子。存储的信息是非易失性的,可以通过测量电阻或弹性隧道诱导光发射分别通过电或光读取。所描述的结构提供了高密度(约 10 cm)的忆阻光电设备,其可用作未来电子、光电和人工神经网络中的多级非易失性存储器、逻辑单元或人工突触。