Suppr超能文献

通过电子与光激发相结合实现等离子体发光增强千倍

Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.

作者信息

Cui Longji, Zhu Yunxuan, Nordlander Peter, Di Ventra Massimiliano, Natelson Douglas

机构信息

Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States.

Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States.

出版信息

Nano Lett. 2021 Mar 24;21(6):2658-2665. doi: 10.1021/acs.nanolett.1c00503. Epub 2021 Mar 12.

Abstract

Surface plasmon enhanced processes and hot-carrier dynamics in plasmonic nanostructures are of great fundamental interest to reveal light-matter interactions at the nanoscale. Using plasmonic tunnel junctions as a platform supporting both electrically and optically excited localized surface plasmons, we report a much greater (over 1000× ) plasmonic light emission at upconverted photon energies under combined electro-optical excitation, compared with electrical or optical excitation separately. Two mechanisms compatible with the form of the observed spectra are interactions of plasmon-induced hot carriers and electronic anti-Stokes Raman scattering. Our measurement results are in excellent agreement with a theoretical model combining electro-optical generation of hot carriers through nonradiative plasmon excitation and hot-carrier relaxation. We also discuss the challenge of distinguishing relative contributions of hot carrier emission and the anti-Stokes electronic Raman process. This observed increase in above-threshold emission in plasmonic systems may open avenues in on-chip nanophotonic switching and hot-carrier photocatalysis.

摘要

等离子体纳米结构中的表面等离子体增强过程和热载流子动力学对于揭示纳米尺度下的光与物质相互作用具有重要的基础研究意义。我们将等离子体隧道结用作一个同时支持电激发和光激发的局域表面等离子体的平台,报告了与单独的电激发或光激发相比,在电光联合激发下,上转换光子能量处的等离子体发光要强得多(超过1000倍)。与观测光谱形式相符的两种机制是等离子体诱导热载流子的相互作用和电子反斯托克斯拉曼散射。我们的测量结果与一个理论模型高度吻合,该模型结合了通过非辐射等离子体激发产生热载流子的电光过程以及热载流子的弛豫过程。我们还讨论了区分热载流子发射和反斯托克斯电子拉曼过程相对贡献的挑战。在等离子体系统中观察到的这种阈上发射的增加可能会为片上纳米光子开关和热载流子光催化开辟道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验