Suppr超能文献

通过构建全面的疾病特异性生物网络来鉴定类风湿关节炎中的关键生物分子。

Identification of key biomolecules in rheumatoid arthritis through the reconstruction of comprehensive disease-specific biological networks.

机构信息

Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.

出版信息

Autoimmunity. 2020 May;53(3):156-166. doi: 10.1080/08916934.2020.1722107. Epub 2020 Feb 3.

Abstract

Rheumatoid arthritis (RA) frequently seen chronic synovial inflammation causing joint destruction, chronic disability and reduced life expectancy. The pathogenesis of RA is not completely known. In this study, several gene expression data including synovial tissue and macrophages from synovial tissues were integrated with a holistic perspective and the molecular targets and signatures in RA were determined. Differentially expressed genes (DEGs) were identified from each dataset by comparing diseased and healthy samples. Afterward, the RA-specific protein-protein interaction (PPI) and the transcriptional regulatory network were reconstructed by using several biomolecule interaction data. Key biomolecules were determined through a statistical test employing the hypergeometric probability density function by using the physical interactions of transcriptional regulators and PPI. The integrative analyses of DEGs indicated that there were 110 and 494 common genes between synovial tissues and macrophages related datasets, respectively. Common DEGs of all datasets were identified as 25 genes and these core genes which might be feasible to uncover the mutual biological mechanism insights behind the RA pathogenesis were used for disease specific biological networks reconstruction. It was determined the hub proteins, novel key biomolecules (i.e. receptor, transcription factors and miRNAs) and biomolecules interactions by using the core DEGs. It was identified STAT1, RAC2 and KYNU as hub proteins, PEPD as a receptor, NR4A1, MEOX2, KLF4, IRF1 and MYB as TFs, miR-299, miR-8078, miR-146a, miR-3659 and miR-6882 as key miRNAs. It was determined that biomolecule interaction scenarios using identified key biomolecules and novel biomolecules including RAC2, PEPD, NR4A1, MEOX2, miR-299, miR-8078, miR-3659 and miR-6882 in RA. Our novel findings could be a crucial resource for the understanding of RA molecular mechanism and may be considered as drug targets and development of novel diagnostic strategies. Corresponding genes and miRNAs should be validated experimental studies.

摘要

类风湿关节炎(RA)是一种常见的慢性滑膜炎症,可导致关节破坏、慢性残疾和预期寿命缩短。RA 的发病机制尚不完全清楚。在这项研究中,我们从整体角度整合了几个基因表达数据集,包括滑膜组织和滑膜组织中的巨噬细胞,并确定了 RA 中的分子靶标和特征。通过比较患病和健康样本,从每个数据集识别差异表达基因(DEGs)。此后,使用几种生物分子相互作用数据重建了 RA 特异性蛋白质-蛋白质相互作用(PPI)和转录调控网络。通过使用转录调节因子和 PPI 的物理相互作用的超几何概率密度函数,通过统计测试确定关键生物分子。整合 DEGs 的分析表明,滑膜组织和巨噬细胞相关数据集之间分别有 110 个和 494 个共同基因。所有数据集的共同 DEGs 被鉴定为 25 个基因,这些核心基因可能有助于揭示 RA 发病机制背后的共同生物学机制见解,用于疾病特异性生物网络的重建。使用核心 DEGs 确定了枢纽蛋白、新的关键生物分子(即受体、转录因子和 miRNAs)和生物分子相互作用。确定 STAT1、RAC2 和 KYNU 为枢纽蛋白,PEPD 为受体,NR4A1、MEOX2、KLF4、IRF1 和 MYB 为 TF,miR-299、miR-8078、miR-146a、miR-3659 和 miR-6882 为关键 miRNAs。确定了使用鉴定出的关键生物分子和新的生物分子(包括 RAC2、PEPD、NR4A1、MEOX2、miR-299、miR-8078、miR-3659 和 miR-6882)在 RA 中的生物分子相互作用场景。我们的新发现可能是理解 RA 分子机制的重要资源,并可作为药物靶点和开发新的诊断策略的考虑因素。相应的基因和 miRNA 应在实验研究中进行验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验