Department of Bioengineering, Marmara University, Istanbul 34854, Turkey.
Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey.
Genes (Basel). 2022 Nov 28;13(12):2233. doi: 10.3390/genes13122233.
Gastric cancer (GC) is one of the five most common cancers in the world and unfortunately has a high mortality rate. To date, the pathogenesis and disease genes of GC are unclear, so the need for new diagnostic and prognostic strategies for GC is undeniable. Despite particular findings in this regard, a holistic approach encompassing molecular data from different biological levels for GC has been lacking. To translate Big Data into system-level biomarkers, in this study, we integrated three different GC gene expression data with three different biological networks for the first time and captured biologically significant (i.e., reporter) transcripts, hub proteins, transcription factors, and receptor molecules of GC. We analyzed the revealed biomolecules with independent RNA-seq data for their diagnostic and prognostic capabilities. While this holistic approach uncovered biomolecules already associated with GC, it also revealed novel system biomarker candidates for GC. Classification performances of novel candidate biomarkers with machine learning approaches were investigated. With this study, AES, CEBPZ, GRK6, HPGDS, SKIL, and SP3 were identified for the first time as diagnostic and/or prognostic biomarker candidates for GC. Consequently, we have provided valuable data for further experimental and clinical efforts that may be useful for the diagnosis and/or prognosis of GC.
胃癌(GC)是世界上最常见的五种癌症之一,不幸的是其死亡率很高。迄今为止,GC 的发病机制和疾病基因尚不清楚,因此需要新的 GC 诊断和预后策略是不可否认的。尽管在这方面有特定的发现,但对于 GC 的分子数据从不同的生物学水平综合到系统水平的生物标志物的整体方法仍然缺乏。为了将大数据转化为系统水平的生物标志物,在这项研究中,我们首次整合了三种不同的 GC 基因表达数据和三种不同的生物学网络,并捕获了 GC 的具有生物学意义的(即报告)转录物、枢纽蛋白、转录因子和受体分子。我们用独立的 RNA-seq 数据分析了所揭示的生物分子的诊断和预后能力。虽然这种整体方法揭示了已经与 GC 相关的生物分子,但它也为 GC 揭示了新的系统生物标志物候选物。我们用机器学习方法研究了新型候选生物标志物的分类性能。通过这项研究,AES、CEBPZ、GRK6、HPGDS、SKIL 和 SP3 首次被确定为 GC 的诊断和/或预后生物标志物候选物。因此,我们为进一步的实验和临床研究提供了有价值的数据,这些数据可能对 GC 的诊断和/或预后有用。