Cardno ChemRisk, Portland, OR, USA.
Cardno ChemRisk, Pittsburgh, PA, USA.
Inhal Toxicol. 2020 Jan;32(1):14-23. doi: 10.1080/08958378.2020.1720867. Epub 2020 Feb 4.
Ethanol is used as a solvent for flavoring chemicals in some electronic cigarette (e-cigarette) liquids (e-liquids). However, there are limited data available regarding the effects of inhalation of ethanol on blood alcohol concentration (BAC) during e-cigarette use. In this study, a modified physiologically based pharmacokinetic (PBPK) model for inhalation of ethanol was used to estimate the BAC time-profile of e-cigarette users who puffed an e-liquid containing 23.5% ethanol. A modified PBPK model for inhalation of ethanol was developed. Use characteristics were estimated based on first-generation and second-generation e-cigarette topography parameters. Three representative use-case puffing profiles were modeled: a user that took many, short puffs; a typical user with intermediate puff counts and puff durations; and a user that took fewer, long puffs. The estimated peak BACs for these three user profiles were 0.22, 0.22, and 0.30 mg/L for first-generation devices, respectively, and 0.85, 0.58, and 0.34 mg/L for second-generation devices, respectively. Additionally, peak BACs for individual first-generation users with directly measured puffing parameters were estimated to range from 0.06 to 0.67 mg/L. None of the scenarios modeled predicted a peak BAC result that approached toxicological or regulatory thresholds that would be associated with physiological impairment (roughly 0.01% or 100 mg/L). The approach used in this study, combining a validated PBPK model for a toxicant with peer-reviewed topographical parameters, can serve as a screening-level exposure assessment useful for evaluation of the safety of e-liquid formulations. BAC: blood alcohol concentration; e-cigarette: electronic cigarette; e-liquid: e-cigarette liquid or propylene glycol and/or vegetable glycerin-based liquid; HS-GC-FID: headspace gas chromatography with flame-ionization detection; HS-GC-MS: headspace gas chromatography-mass spectrometry; PBPK: physiologically based pharmacokinetic; C: puff concentration expressed as ppm; C: ethanol air concentration expressed on a mass basis; C: ethanol concentration in the venous blood; ρ: density; EC: ethanol concentration in the liquid; PLC: liquid consumption per puff; PAV: air volume of the puff; C: puff concentration expressed as ppm; MW: molecular weight; P: pressure; T: temperature; PK: pharmacokinetic.
乙醇被用作某些电子烟(电子香烟)液体(电子烟液)中调味化学品的溶剂。然而,目前关于电子烟使用过程中吸入乙醇对血液酒精浓度(BAC)的影响的数据有限。在这项研究中,使用改良的生理基础药代动力学(PBPK)模型来估算吸入 23.5%乙醇电子烟液的电子烟使用者的 BAC 时间曲线。 建立了改良的吸入乙醇 PBPK 模型。根据第一代和第二代电子烟的地形参数估算使用特征。对三种代表性的抽吸轮廓模型进行建模:大量、短暂抽吸的用户;具有中等抽吸次数和抽吸持续时间的典型用户;以及抽吸次数较少、抽吸时间较长的用户。 对于第一代设备,这三种用户轮廓的估计峰值 BAC 分别为 0.22、0.22 和 0.30mg/L,对于第二代设备,分别为 0.85、0.58 和 0.34mg/L。此外,对于直接测量抽吸参数的个体第一代用户,估计的峰值 BAC 范围为 0.06 至 0.67mg/L。建模预测的任何峰值 BAC 结果都不会接近与生理损伤相关的毒理学或监管阈值(大致为 0.01%或 100mg/L)。 本研究中使用的方法是将经验证的有毒物质 PBPK 模型与经过同行评审的地形参数相结合,可以作为一种筛选水平的暴露评估方法,用于评估电子烟液配方的安全性。 BAC:血液酒精浓度;电子烟:电子香烟;电子烟液:电子烟液体或丙二醇和/或植物甘油基液体;HS-GC-FID:顶空气相色谱法-火焰离子化检测;HS-GC-MS:顶空气相色谱-质谱法;PBPK:生理基础药代动力学;C:以 ppm 表示的抽吸浓度;C:以质量为基础的乙醇空气浓度;C:静脉血中的乙醇浓度;ρ:密度;EC:液体中的乙醇浓度;PLC:每口抽吸的液体消耗;PAV:抽吸的空气量;C:以 ppm 表示的抽吸浓度;MW:分子量;P:压力;T:温度;PK:药代动力学。