Woodhams Douglas C, Bletz Molly C, Becker C Guilherme, Bender Hayden A, Buitrago-Rosas Daniel, Diebboll Hannah, Huynh Roger, Kearns Patrick J, Kueneman Jordan, Kurosawa Emmi, LaBumbard Brandon C, Lyons Casandra, McNally Kerry, Schliep Klaus, Shankar Nachiket, Tokash-Peters Amanda G, Vences Miguel, Whetstone Ross
Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, 0843-03092, Panamá, Panama.
Genome Biol. 2020 Feb 3;21(1):23. doi: 10.1186/s13059-019-1908-8.
Host-associated microbiomes, the microorganisms occurring inside and on host surfaces, influence evolutionary, immunological, and ecological processes. Interactions between host and microbiome affect metabolism and contribute to host adaptation to changing environments. Meta-analyses of host-associated bacterial communities have the potential to elucidate global-scale patterns of microbial community structure and function. It is possible that host surface-associated (external) microbiomes respond more strongly to variations in environmental factors, whereas internal microbiomes are more tightly linked to host factors.
Here, we use the dataset from the Earth Microbiome Project and accumulate data from 50 additional studies totaling 654 host species and over 15,000 samples to examine global-scale patterns of bacterial diversity and function. We analyze microbiomes from non-captive hosts sampled from natural habitats and find patterns with bioclimate and geophysical factors, as well as land use, host phylogeny, and trophic level/diet. Specifically, external microbiomes are best explained by variations in mean daily temperature range and precipitation seasonality. In contrast, internal microbiomes are best explained by host factors such as phylogeny/immune complexity and trophic level/diet, plus climate.
Internal microbiomes are predominantly associated with top-down effects, while climatic factors are stronger determinants of microbiomes on host external surfaces. Host immunity may act on microbiome diversity through top-down regulation analogous to predators in non-microbial ecosystems. Noting gaps in geographic and host sampling, this combined dataset represents a global baseline available for interrogation by future microbial ecology studies.
宿主相关微生物群落,即存在于宿主体内和体表的微生物,影响着进化、免疫和生态过程。宿主与微生物群落之间的相互作用会影响新陈代谢,并有助于宿主适应不断变化的环境。对宿主相关细菌群落的荟萃分析有潜力阐明微生物群落结构和功能的全球尺度模式。宿主表面相关(外部)微生物群落可能对环境因素的变化反应更强烈,而内部微生物群落与宿主因素的联系更为紧密。
在这里,我们使用来自地球微生物组计划的数据集,并积累了另外50项研究的数据,总计654个宿主物种和超过15000个样本,以研究细菌多样性和功能的全球尺度模式。我们分析了从自然栖息地采集的非圈养宿主的微生物群落,发现了与生物气候、地球物理因素以及土地利用、宿主系统发育和营养级/饮食相关的模式。具体而言,外部微生物群落最好用日平均温度范围和降水季节性的变化来解释。相比之下,内部微生物群落最好用宿主因素来解释,如系统发育/免疫复杂性和营养级/饮食,以及气候。
内部微生物群落主要与自上而下的效应相关,而气候因素是宿主外表面微生物群落的更强决定因素。宿主免疫可能通过类似于非微生物生态系统中捕食者的自上而下的调节作用于微生物群落多样性。考虑到地理和宿主采样方面的差距,这个综合数据集代表了一个可供未来微生物生态学研究查询的全球基线。