Suppr超能文献

鱼类皮肤和肠道微生物组显示出宿主物种和生境的鲜明特征。

Fish Skin and Gut Microbiomes Show Contrasting Signatures of Host Species and Habitat.

机构信息

Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada

La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Wodonga, Victoria, Australia.

出版信息

Appl Environ Microbiol. 2020 Aug 3;86(16). doi: 10.1128/AEM.00789-20.

Abstract

Teleost fish represent an invaluable repertoire of host species to study the factors shaping animal-associated microbiomes. Several studies have shown that the phylogenetic structure of the fish gut microbiome is driven by species-specific (e.g., host ancestry, genotype, or diet) and habitat-specific (e.g., hydrochemical parameters and bacterioplankton composition) factors. However, our understanding of other host-associated microbial niches, such as the skin mucus microbiome, remains limited. The goal of our study was to explore simultaneously the phylogenetic structure of the fish skin mucus and gut microbiome and compare the effect of species- and habitat-specific drivers on the structure of microbial communities in both tissues. We sampled 114 wild fish from 6 populations of 3 ecologically and phylogenetically contrasting Amazonian teleost species. Water samples were collected at each site, and 10 physicochemical parameters were characterized. The skin mucus, gut, and water microbial communities were characterized using a metabarcoding approach targeting the V3-V4 regions of the 16S rRNA. Our results showed a significant distinction between the phylogenetic profile and diversity of the microbiome from each microbial niche. Skin mucus and bacterioplankton communities were significantly closer in composition than gut and free-living communities. Species-specific factors mostly modulated gut bacterial communities, while the skin mucus microbiome was predominantly associated with environmental physicochemistry and bacterioplankton community structure. These results suggest that the variable skin mucus community is a relevant target for the development of microbial biomarkers of environmental status, while the more conserved gut microbiome is better suited to study long-term host-microbe interactions over evolutionary time scales. Whether host-associated microbiomes are mostly shaped by species-specific or environmental factors is still unresolved. In particular, it is unknown to what extent microbial communities from two different host tissues from the same host respond to these factors. Our study is one of the first to focus on the microbiome of teleost fish to shed a light on this topic as we investigate how the phylogenetic structure of microbial communities from two distinct fish tissues are shaped by species- and habitat-specific factors. Our study showed that in contrast to the teleost gut microbiome, skin mucus communities are highly environment dependent. This result has various implications: (i) the skin mucus microbiome should be used, rather than the gut, to investigate bacterial biomarkers of ecosystem perturbance in the wild, and (ii) the gut microbiome is better suited for studies of the drivers of phylosymbiosis, or the coevolution of fish and their symbionts.

摘要

硬骨鱼类是研究塑造动物相关微生物组的因素的宝贵宿主物种库。多项研究表明,鱼类肠道微生物组的系统发育结构是由物种特异性(例如,宿主的祖先、基因型或饮食)和栖息地特异性(例如,水化学参数和浮游细菌组成)因素驱动的。然而,我们对其他宿主相关微生物生境(如皮肤黏液微生物组)的了解仍然有限。我们的研究目的是同时探索鱼类皮肤黏液和肠道微生物组的系统发育结构,并比较物种特异性和栖息地特异性因素对这两种组织中微生物群落结构的影响。我们从 3 种具有生态和系统发育差异的亚马逊硬骨鱼类的 6 个种群中采集了 114 条野生鱼类。在每个地点采集水样,并对 10 个理化参数进行了表征。使用靶向 16S rRNA V3-V4 区的宏条形码方法对皮肤黏液、肠道和水样微生物群落进行了表征。我们的结果表明,每个微生物生境的微生物组的系统发育特征和多样性之间存在显著差异。皮肤黏液和浮游细菌群落的组成比肠道和自由生活群落更为接近。物种特异性因素主要调节肠道细菌群落,而皮肤黏液微生物组主要与环境理化性质和浮游细菌群落结构相关。这些结果表明,可变的皮肤黏液群落是开发环境状况微生物生物标志物的一个有价值的目标,而更为保守的肠道微生物组更适合研究长期的宿主-微生物相互作用在进化时间尺度上。宿主相关微生物组主要受物种特异性因素还是环境因素的影响仍未解决。特别是,我们还不知道来自同一宿主的两种不同宿主组织的微生物群落对这些因素的响应程度。我们的研究是首批专门研究硬骨鱼类微生物组的研究之一,旨在阐明这一主题,因为我们研究了两个不同鱼类组织的微生物群落的系统发育结构是如何受到物种特异性和栖息地特异性因素的影响。我们的研究表明,与硬骨鱼肠道微生物组相比,皮肤黏液群落高度依赖环境。这一结果具有多种意义:(i)在野外,应使用皮肤黏液微生物组而不是肠道来研究细菌对生态系统干扰的生物标志物,以及(ii)肠道微生物组更适合研究共生关系的驱动因素,或鱼类与其共生体的共同进化。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验