Suppr超能文献

基于机器学习的 CT 纹理分析对良恶性肾实质肿块的预测。

Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis.

机构信息

Department of Radiology, Sultangazi Haseki Training and Research Hospital, Sultangazi, Istanbul, Turkey.

Department of Radiology, Istanbul Training and Research Hospital, Samatya, Istanbul 34098, Turkey.

出版信息

Acad Radiol. 2020 Oct;27(10):1422-1429. doi: 10.1016/j.acra.2019.12.015. Epub 2020 Feb 1.

Abstract

RATIONALE AND OBJECTIVES

This study aimed to investigate whether benign and malignant renal solid masses could be distinguished through machine learning (ML)-based computed tomography (CT) texture analysis.

MATERIALS AND METHODS

Seventy-nine patients with 84 solid renal masses (21 benign; 63 malignant) from a single center were included in this retrospective study. Malignant masses included common renal cell carcinoma (RCC) subtypes: clear cell RCC, papillary cell RCC, and chromophobe RCC. Benign masses are represented by oncocytomas and fat-poor angiomyolipomas. Following preprocessing steps, a total of 271 texture features were extracted from unenhanced and contrast-enhanced CT images. Dimension reduction was done with a reliability analysis and then with a feature selection algorithm. A nested-approach was used for feature selection, model optimization, and validation. Eight ML algorithms were used for the classifications: decision tree, locally weighted learning, k-nearest neighbors, naive Bayes, logistic regression, support vector machine, neural network, and random forest.

RESULTS

The number of features with good reproducibility was 198 for unenhanced CT and 244 for contrast-enhanced CT. Random forest algorithm demonstrated the best predictive performance using five selected contrast-enhanced CT texture features. The accuracy and area under the curve metrics were 90.5% and 0.915, respectively. Having eliminated the highly collinear features from the analysis, the accuracy and area under the curve values slightly increased to 91.7% and 0.916, respectively.

CONCLUSION

ML-based contrast-enhanced CT texture analysis might be a potential method for distinguishing benign and malignant solid renal masses with satisfactory performance.

摘要

背景和目的

本研究旨在通过基于机器学习(ML)的计算机断层扫描(CT)纹理分析来区分良性和恶性肾脏实性肿块。

材料和方法

本回顾性研究纳入了来自单一中心的 79 名 84 例肾脏实性肿块患者(21 例良性;63 例恶性)。恶性肿块包括常见的肾细胞癌(RCC)亚型:透明细胞 RCC、乳头状 RCC 和嫌色细胞 RCC。良性肿块由嗜酸细胞瘤和乏脂肪性血管平滑肌脂肪瘤组成。经过预处理步骤,从未增强和增强 CT 图像中提取了总共 271 个纹理特征。通过可靠性分析和特征选择算法进行降维。采用嵌套方法进行特征选择、模型优化和验证。使用 8 种 ML 算法进行分类:决策树、局部加权学习、k-最近邻、朴素贝叶斯、逻辑回归、支持向量机、神经网络和随机森林。

结果

未增强 CT 的可重复性好的特征数量为 198 个,增强 CT 的特征数量为 244 个。随机森林算法使用 5 个选定的增强 CT 纹理特征显示出最佳的预测性能。准确率和曲线下面积指标分别为 90.5%和 0.915。在从分析中消除高度共线性特征后,准确率和曲线下面积值略有提高,分别为 91.7%和 0.916。

结论

基于 ML 的增强 CT 纹理分析可能是一种区分良性和恶性肾脏实性肿块的潜在方法,具有令人满意的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验