Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3388-3396. doi: 10.1073/pnas.1912400117. Epub 2020 Feb 3.
Optical microscopy for biomedical samples requires expertise in staining to visualize structure and composition. Midinfrared (mid-IR) spectroscopic imaging offers label-free molecular recording and virtual staining by probing fundamental vibrational modes of molecular components. This quantitative signal can be combined with machine learning to enable microscopy in diverse fields from cancer diagnoses to forensics. However, absorption of IR light by common optical imaging components makes mid-IR light incompatible with modern optical microscopy and almost all biomedical research and clinical workflows. Here we conceptualize an IR-optical hybrid (IR-OH) approach that sensitively measures molecular composition based on an optical microscope with wide-field interferometric detection of absorption-induced sample expansion. We demonstrate that IR-OH exceeds state-of-the-art IR microscopy in coverage (10-fold), spatial resolution (fourfold), and spectral consistency (by mitigating the effects of scattering). The combined impact of these advances allows full slide infrared absorption images of unstained breast tissue sections on a visible microscope platform. We further show that automated histopathologic segmentation and generation of computationally stained (stainless) images is possible, resolving morphological features in both color and spatial detail comparable to current pathology protocols but without stains or human interpretation. IR-OH is compatible with clinical and research pathology practice and could make for a cost-effective alternative to conventional stain-based protocols for stainless, all-digital pathology.
用于生物医学样本的光学显微镜需要具备染色专业知识,以实现结构和组成的可视化。中红外(mid-IR)光谱成像是一种无标记的分子记录方法,通过探测分子成分的基本振动模式来实现虚拟染色。这种定量信号可以与机器学习相结合,从而实现从癌症诊断到法医学等各个领域的显微镜检查。然而,常见的光学成像元件对红外光的吸收使得 mid-IR 光与现代光学显微镜以及几乎所有生物医学研究和临床工作流程都不兼容。在这里,我们提出了一种 IR-光学混合(IR-OH)方法,该方法基于具有宽场干涉检测吸收诱导样品膨胀的光学显微镜,灵敏地测量分子组成。我们证明,IR-OH 在覆盖范围(提高 10 倍)、空间分辨率(提高 4 倍)和光谱一致性(通过减轻散射的影响)方面优于最先进的红外显微镜。这些进展的综合影响使得可以在可见显微镜平台上对未经染色的乳腺组织切片进行全幻灯片红外吸收成像。我们进一步表明,自动组织病理学分割和计算染色(无染色)图像的生成是可能的,可以解析与当前病理学协议相当的形态特征,包括颜色和空间细节,但无需染色或人工解释。IR-OH 与临床和研究病理学实践兼容,并且可能成为替代传统基于染色的无染色、全数字病理学协议的具有成本效益的替代方案。