Adi Wihan, Perez Bryan E Rubio, Liu Yuming, Runkle Sydney, Eliceiri Kevin W, Yesilkoy Filiz
Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA.
Department of Electrical and Computer Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA.
bioRxiv. 2024 May 26:2024.05.22.595393. doi: 10.1101/2024.05.22.595393.
Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues.
To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides a mid-infrared spectral imaging method to detect fibrillar collagen based on its chemical signatures.
We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The remaining 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment.
Compared to the SHG ground truth, the generated MIRSI collagen images achieved a high average boundary F-score (0.8 at 4 pixels threshold) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment.
We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
能够从同一样本中提供互补的结构和化学信息的无标记多模态成像方法对于全面的组织分析至关重要。在研究纤维状胶原蛋白的结构变化与癌症进展相关的复杂肿瘤微环境时,尤其需要这些方法。为满足这一需求,我们提出了一种多模态计算成像方法,其中将中红外光谱成像(MIRSI)与二次谐波产生(SHG)显微镜相结合,以识别生物组织中的纤维状胶原蛋白。
展示一种多模态方法,其中形态特异性对比机制指导中红外光谱成像方法根据其化学特征检测纤维状胶原蛋白。
我们使用SHG图像作为真实的胶原蛋白标签训练了一个监督机器学习(ML)模型,以便根据生物组织的中红外高光谱图像对纤维状胶原蛋白进行分类。使用MIRSI和SHG显微镜对五个人类胰腺组织样本(尺寸为毫米级)进行成像。总共使用280万个MIRSI光谱来训练随机森林(RF)模型。其余6800万个光谱用于从胶原蛋白分割、方向和排列方面验证由RF-MIRSI模型生成的胶原蛋白图像。
与SHG真实情况相比,生成的MIRSI胶原蛋白图像在胶原蛋白分布方面实现了较高的平均边界F分数(在4像素阈值下为0.8),在胶原蛋白方向上具有高相关性(皮尔逊R为0.82),在胶原蛋白排列方面也具有类似的高相关性(皮尔逊R为0.66)。
我们展示了机器学习辅助的无标记中红外高光谱成像在肿瘤病理样本中进行胶原纤维和肿瘤微环境分析的潜力。