J Neural Eng. 2020 Mar 10;17(2):026004. doi: 10.1088/1741-2552/ab7264.
Designing an effective classifier with high classification accuracy and strong generalization capability is essential for brain-computer interface (BCI) research. In this study, an extreme learning machine (ELM) based method is proposed to improve the classification accuracy of motor imagery electroencephalogram (EEG).
The proposed method constructs an ensemble classifier based on optimized ELMs. Particle swarm optimization is used to simultaneously optimize the input weights and hidden biases of ELM to avoid the randomness and instability of classification result when ELM uses randomly generated parameters, and majority voting strategy is used to fuse the classification results of multiple base classifiers to avoid the negative impact of ELM with local optimal parameters on classification result. The proposed method was compared with four competing methods in experiments based on two public EEG datasets and some existing methods reported in the literature using the same datasets as well.
The results indicate that the proposed method achieved significant higher classification accuracies than those of the competing methods on both two-class and four-class motor imagery data. Moreover, compared to the existing methods, it still obtained superior average accuracies of two-class classification and performed better for the subjects with relatively poor accuracies on both two-class and four-class classifications.
The significant accuracy improvement demonstrates the superiority of the proposed method. It can be a promising candidate for accurate classification of motor imagery EEG in BCI systems.
设计具有高分类准确性和强泛化能力的有效分类器,是脑机接口(BCI)研究的关键。本研究提出了一种基于极限学习机(ELM)的方法,以提高运动想象脑电(EEG)的分类准确性。
所提出的方法构建了基于优化 ELM 的集成分类器。粒子群优化被用于同时优化 ELM 的输入权重和隐藏偏差,以避免 ELM 使用随机生成的参数时分类结果的随机性和不稳定性,并且采用多数投票策略融合多个基分类器的分类结果,以避免具有局部最优参数的 ELM 对分类结果的负面影响。该方法在基于两个公共 EEG 数据集的实验中与四种竞争方法进行了比较,并与使用相同数据集的文献中报道的一些现有方法进行了比较。
结果表明,所提出的方法在两类和四类运动想象数据上均显著优于竞争方法的分类精度。此外,与现有方法相比,它在两类分类的平均精度上仍具有优势,并且在两类和四类分类的精度均较差的受试者中表现更好。
显著的准确性提高证明了所提出方法的优越性。它可以成为 BCI 系统中运动想象 EEG 精确分类的有前途的候选者。