Suppr超能文献

[运动想象脑电信号分类算法研究进展]

[Progress of classification algorithms for motor imagery electroencephalogram signals].

作者信息

Liu Tuo, Ye Yangyang, Wang Kun, Xu Lichao, Yi Weibo, Xu Minpeng, Ming Dong

机构信息

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R.China.

Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin 300072, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):995-1002. doi: 10.7507/1001-5515.202101089.

Abstract

Motor imagery (MI), motion intention of the specific body without actual movements, has attracted wide attention in fields as neuroscience. Classification algorithms for motor imagery electroencephalogram (MI-EEG) signals are able to distinguish different MI tasks based on the physiological information contained by the EEG signals, especially the features extracted from them. In recent years, there have been some new advances in classification algorithms for MI-EEG signals in terms of classifiers versus machine learning strategies. In terms of classifiers, traditional machine learning classifiers have been improved by some researchers, deep learning and Riemannian geometry classifiers have been widely applied as well. In terms of machine learning strategies, ensemble learning, adaptive learning, and transfer learning strategies have been utilized to improve classification accuracies or reach other targets. This paper reviewed the progress of classification algorithms for MI-EEG signals, summarized and evaluated the existing classifiers and machine learning strategies, to provide new ideas for developing classification algorithms with higher performance.

摘要

运动想象(MI),即特定身体部位的运动意图而无实际动作,已在神经科学等领域引起广泛关注。运动想象脑电图(MI-EEG)信号的分类算法能够根据脑电图信号所包含的生理信息,特别是从中提取的特征,来区分不同的运动想象任务。近年来,在MI-EEG信号分类算法方面,无论是分类器还是机器学习策略都有了一些新进展。在分类器方面,一些研究人员对传统机器学习分类器进行了改进,深度学习和黎曼几何分类器也得到了广泛应用。在机器学习策略方面,集成学习、自适应学习和迁移学习策略已被用于提高分类准确率或实现其他目标。本文回顾了MI-EEG信号分类算法的进展,总结并评估了现有的分类器和机器学习策略,为开发高性能的分类算法提供新思路。

相似文献

1
[Progress of classification algorithms for motor imagery electroencephalogram signals].[运动想象脑电信号分类算法研究进展]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):995-1002. doi: 10.7507/1001-5515.202101089.
2
Motor imagery EEG classification based on ensemble support vector learning.基于集成支持向量学习的运动想象脑电分类
Comput Methods Programs Biomed. 2020 Sep;193:105464. doi: 10.1016/j.cmpb.2020.105464. Epub 2020 Mar 27.

本文引用的文献

2
EEG-Based BCI Emotion Recognition: A Survey.基于脑电的脑机接口情绪识别:综述。
Sensors (Basel). 2020 Sep 7;20(18):5083. doi: 10.3390/s20185083.
7
Motor imagery EEG classification based on ensemble support vector learning.基于集成支持向量学习的运动想象脑电分类
Comput Methods Programs Biomed. 2020 Sep;193:105464. doi: 10.1016/j.cmpb.2020.105464. Epub 2020 Mar 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验