Suppr超能文献

基于视觉意象脑电信号的多字符分类方案的设计与实现。

The design and implementation of multi-character classification scheme based on EEG signals of visual imagery.

作者信息

Pan Hongguang, Song Wei, Li Li, Qin Xuebin

机构信息

College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, 710054 Shaanxi China.

Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an, 710054 Shaanxi China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2299-2309. doi: 10.1007/s11571-024-10087-z. Epub 2024 Mar 9.

Abstract

In visual-imagery-based brain-computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor-uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.

摘要

在基于视觉意象的脑机接口(VI-BCI)中,存在想象任务单一以及特征信息描述不足的问题,这严重阻碍了VI-BCI技术在恢复通信领域的发展和应用。本文设计并优化了一种基于视觉意象(VI)脑电信号(EEG)的多字符分类方案,用于对包括26个小写英文字母和三个标点符号在内的29个字符进行分类。首先,设计了一种随机呈现字符并包含准备阶段的新范式来获取脑电信号并构建多字符数据集,以消除VI任务之间的影响。其次,通过Morlet小波变换获得张量数据,并使用基于张量不相关多线性主成分分析的特征提取算法来提取高质量特征。最后,采用支持向量机、K近邻和极限学习机这三种分类器对多字符进行分类,并比较结果。实验结果表明,所提出的方案有效地提取了具有最小冗余、弱相关性和强表示能力的字符特征,并成功实现了对29个字符的平均分类准确率达到97.59%,在分类准确率和分类数量方面均超过了现有研究。本研究设计了一种获取VI脑电信号的新范式,并结合Morlet小波变换和UMPCA算法来提取字符特征,实现了在各种分类器中的多字符分类。该研究为建立直接的脑与外界通信开辟了一条新途径。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验