Suppr超能文献

通过改良的iDISCO方法对成年完整骨骼肌内神经支配进行三维可视化。

Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method.

作者信息

Li Yusha, Xu Jianyi, Zhu Jingtan, Yu Tingting, Zhu Dan

机构信息

Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.

Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China.

出版信息

Neurophotonics. 2020 Jan;7(1):015003. doi: 10.1117/1.NPh.7.1.015003. Epub 2020 Jan 22.

Abstract

Three-dimensional visualization of the innervation in skeletal muscles is helpful for understanding the morphological structure and function. iDISCO, a whole-mount immunolabeling and clearing technique, provides a valuable tool for volume imaging of intramuscular nerve fibers but suffers from the nonspecific staining caused by the anti-mouse secondary antibody when using the murine primary antibody. We developed a modified iDISCO method by introducing pretreatment of ScaeCUBIC-1 reagent, termed m-iDISCO. The m-iDISCO method could eliminate the nonspecific staining and achieve uniform and complete labeling of nerve fibers in various muscles with mouse anti-neurofilament primary antibody. Combining the m-iDISCO method with light-sheet microscopy enabled us to visualize the innervation of adult mouse tibialis anterior and trace the nerve fibers from extramuscular branches to intramuscular terminal branches. This method represents an effective alternative for studying the innervation of intact skeletal muscles in health and disease.

摘要

骨骼肌神经支配的三维可视化有助于理解其形态结构和功能。iDISCO是一种整装免疫标记和透明化技术,为肌内神经纤维的体积成像提供了有价值的工具,但在使用鼠源一抗时会受到抗小鼠二抗引起的非特异性染色的影响。我们通过引入ScaeCUBIC-1试剂预处理开发了一种改良的iDISCO方法,称为m-iDISCO。m-iDISCO方法可以消除非特异性染色,并用小鼠抗神经丝一抗实现对各种肌肉中神经纤维的均匀和完整标记。将m-iDISCO方法与光片显微镜相结合,使我们能够可视化成年小鼠胫前肌的神经支配,并追踪从肌外分支到肌内终末分支的神经纤维。该方法是研究健康和疾病状态下完整骨骼肌神经支配的一种有效替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验