Suppr超能文献

针对小鼠和人类胰腺优化的光学透明化及三维分析

Optical Clearing and 3D Analysis Optimized for Mouse and Human Pancreata.

作者信息

Alvarsson Alexandra, Jimenez-Gonzalez Maria, Li Rosemary, Rosselot Carolina, Tzavaras Nikolaos, Wu Zhuhao, Stanley Sarah A

机构信息

Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

The Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Bio Protoc. 2021 Aug 5;11(15):e4103. doi: 10.21769/BioProtoc.4103.

Abstract

The pancreas is a heavily innervated organ, but pancreatic innervation can be challenging to comprehensively assess using conventional histological methods. However, recent advances in whole-mount tissue clearing and 3D rendering techniques have allowed detailed reconstructions of pancreatic innervation. Optical clearing is used to enhance tissue transparency and reduce light scattering, thus eliminating the need to section the tissue. Here, we describe a modified version of the optical tissue clearing protocol iDISCO+ (immunolabeling-enabled three-dimensional imaging of solvent-cleared organs) optimized for pancreatic innervation and endocrine markers. The protocol takes 13-19 days, depending on tissue size. In addition, we include protocols for imaging using light sheet and confocal microscopes and for 3D segmentation of pancreatic innervation and endocrine cells using Imaris.

摘要

胰腺是一个神经高度密集的器官,但使用传统组织学方法全面评估胰腺神经支配具有挑战性。然而,全组织透明化和三维渲染技术的最新进展使得胰腺神经支配的详细重建成为可能。光学透明化用于提高组织透明度并减少光散射,从而无需对组织进行切片。在这里,我们描述了一种针对胰腺神经支配和内分泌标记物优化的光学组织透明化方案iDISCO+(溶剂清除器官的免疫标记三维成像)的改良版本。该方案需要13 - 19天,具体取决于组织大小。此外,我们还包括使用光片显微镜和共聚焦显微镜成像以及使用Imaris对胰腺神经支配和内分泌细胞进行三维分割的方案。

相似文献

本文引用的文献

8
Neural control of the endocrine pancreas.胰腺内分泌的神经控制。
Best Pract Res Clin Endocrinol Metab. 2014 Oct;28(5):745-56. doi: 10.1016/j.beem.2014.05.002. Epub 2014 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验