Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Nucleic Acids Res. 2020 Apr 6;48(6):e34. doi: 10.1093/nar/gkaa061.
Fluorescence microscopy is invaluable to a range of biomolecular analysis approaches. The required labeling of proteins of interest, however, can be challenging and potentially perturb biomolecular functionality as well as cause imaging artefacts and photo bleaching issues. Here, we introduce inverse (super-resolution) imaging of unlabeled proteins bound to DNA. In this new method, we use DNA-binding fluorophores that transiently label bare DNA but not protein-bound DNA. In addition to demonstrating diffraction-limited inverse imaging, we show that inverse Binding-Activated Localization Microscopy or 'iBALM' can resolve biomolecular features smaller than the diffraction limit. The current detection limit is estimated to lie at features between 5 and 15 nm in size. Although the current image-acquisition times preclude super-resolving fast dynamics, we show that diffraction-limited inverse imaging can reveal molecular mobility at ∼0.2 s temporal resolution and that the method works both with DNA-intercalating and non-intercalating dyes. Our experiments show that such inverse imaging approaches are valuable additions to the single-molecule toolkit that relieve potential limitations posed by labeling.
荧光显微镜在各种生物分子分析方法中非常有价值。然而,所需的感兴趣蛋白质的标记可能具有挑战性,并且可能会破坏生物分子的功能,以及导致成像伪影和光漂白问题。在这里,我们介绍了与 DNA 结合的未标记蛋白质的逆(超分辨率)成像。在这种新方法中,我们使用 DNA 结合荧光染料,它们会暂时标记裸露的 DNA,但不会标记与蛋白质结合的 DNA。除了证明具有衍射极限的逆成像外,我们还表明,逆结合激活定位显微镜或'iBALM'可以解析小于衍射极限的生物分子特征。当前的检测极限估计在 5nm 到 15nm 之间的特征大小。尽管当前的图像采集时间排除了超分辨率快速动力学,但我们表明,衍射限制的逆成像可以揭示约 0.2s 时间分辨率的分子流动性,并且该方法适用于 DNA 嵌入和非嵌入染料。我们的实验表明,这种逆成像方法是对单分子工具包的有价值补充,可以缓解标记带来的潜在限制。