Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
Wiley Interdiscip Rev Syst Biol Med. 2019 May;11(3):e1442. doi: 10.1002/wsbm.1442. Epub 2018 Nov 19.
Synergistic developments in advanced fluorescent imaging and labeling techniques enable direct visualization of the chromatin structure and dynamics at the nanoscale level and in live cells. Super-resolution imaging encompasses a class of constantly evolving techniques that break the diffraction limit of fluorescence microscopy. Structured illumination microscopy provides a twofold resolution improvement and can readily achieve live multicolor imaging using conventional fluorophores. Single-molecule localization microscopy increases the spatial resolution by approximately 10-fold at the expense of slower acquisition speed. Stimulated emission-depletion microscopy generates a roughly fivefold resolution improvement with an imaging speed proportional to the scanning area. In parallel, advanced labeling strategies have been developed to "light up" global and sequence-specific DNA regions. DNA binding dyes have been exploited to achieve high labeling densities in single-molecule localization microscopy and enhance contrast in correlated light and electron microscopy. New-generation Oligopaint utilizes bioinformatics analyses to optimize the design of fluorescence in situ hybridization probes. Through sequential and combinatorial labeling, direct characterization of the DNA domain volume and length as well as the spatial organization of distinct topologically associated domains has been reported. In live cells, locus-specific labeling has been achieved by either inserting artificial loci next to the gene of interest, such as the repressor-operator array systems, or utilizing genome editing tools, including zinc finer proteins, transcription activator-like effectors, and the clustered regularly interspaced short palindromic repeats systems. Combined with single-molecule tracking, these labeling techniques enable direct visualization of intra- and inter-chromatin interactions. This article is categorized under: Laboratory Methods and Technologies > Imaging.
协同发展的先进荧光成像和标记技术使我们能够直接观察纳米级水平和活细胞中的染色质结构和动态。超分辨率成像是一类不断发展的技术,突破了荧光显微镜的衍射极限。结构光照明显微镜提供了两倍的分辨率提高,可以使用传统荧光染料轻松实现活细胞的多色成像。单分子定位显微镜通过大约 10 倍的空间分辨率提高,以牺牲较慢的采集速度为代价。受激发射损耗显微镜通过与扫描面积成正比的成像速度产生大约五倍的分辨率提高。与此同时,还开发了先进的标记策略来“点亮”全基因组和序列特异性 DNA 区域。DNA 结合染料已被用于实现单分子定位显微镜中的高密度标记,并增强相关光和电子显微镜中的对比度。新一代寡核苷酸探针利用生物信息学分析来优化荧光原位杂交探针的设计。通过顺序和组合标记,已经报道了直接表征 DNA 结构域体积和长度以及不同拓扑关联结构域的空间组织。在活细胞中,可以通过在感兴趣基因旁边插入人工基因座(如阻遏物-操纵子阵列系统)或利用基因组编辑工具(包括锌指蛋白、转录激活子样效应物和簇状规则间隔短回文重复系统)来实现基因座特异性标记。与单分子追踪相结合,这些标记技术可以直接可视化染色质内和染色质间的相互作用。本文归类于:实验室方法和技术>成像。