Evotec (UK) Ltd., Abingdon, Oxfordshire, UK.
Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
Methods Mol Biol. 2020;2114:163-175. doi: 10.1007/978-1-0716-0282-9_11.
G-protein-coupled receptors (GPCRs) have enormous physiological and biomedical importance, and therefore it is not surprising that they are the targets of many prescribed drugs. Further progress in GPCR drug discovery is highly dependent on the availability of protein structural information. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanics (QM) approaches are often too computationally expensive to be of practical use in time-sensitive situations, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed, and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule toward ligand binding, including an analysis of their chemical nature. Such information is essential for an efficient structure-based drug design (SBDD) process. In this chapter, we describe how to use FMO in the characterization of GPCR-ligand interactions.
G 蛋白偶联受体(GPCRs)具有巨大的生理和生物医学重要性,因此它们是许多处方药的靶点也就不足为奇了。GPCR 药物发现的进一步进展高度依赖于蛋白质结构信息的可用性。然而,X 射线晶体学指导 GPCR 靶点药物发现过程的能力受到探索受体 - 配体相互作用的准确工具的可用性的限制。视觉检查和分子力学方法无法解释分子相互作用的全部复杂性。量子力学(QM)方法通常计算成本过高,无法在时间敏感的情况下实际使用,但片段分子轨道(FMO)方法提供了一个出色的解决方案,它结合了准确性、速度和揭示关键相互作用的能力,否则这些相互作用很难被发现。将 GPCR 晶体学或同源建模与 FMO 集成,可以揭示单个残基和水分子对配体结合的贡献的原子细节,包括对其化学性质的分析。这些信息对于有效的基于结构的药物设计(SBDD)过程至关重要。在本章中,我们将描述如何使用 FMO 来描述 GPCR-配体相互作用。