Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom.
Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
J Chem Theory Comput. 2020 Apr 14;16(4):2814-2824. doi: 10.1021/acs.jctc.9b01136. Epub 2020 Mar 9.
G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins, regulating almost every aspect of cellular activity and serving as key targets for drug discovery. We have identified an accurate and reliable computational method to characterize the strength and chemical nature of the interhelical interactions between the residues of transmembrane (TM) domains during different receptor activation states, something that cannot be characterized solely by visual inspection of structural information. Using the fragment molecular orbital (FMO) quantum mechanics method to analyze 35 crystal structures representing different branches of the class A GPCR family, we have identified 69 topologically equivalent TM residues that form a consensus network of 51 inter-TM interactions, providing novel results that are consistent with and help to rationalize experimental data. This discovery establishes a comprehensive picture of how defined molecular forces govern specific interhelical interactions which, in turn, support the structural stability, ligand binding, and activation of GPCRs.
G 蛋白偶联受体(GPCRs)是最大的膜蛋白超家族,调节细胞活动的几乎各个方面,并作为药物发现的关键靶点。我们已经确定了一种准确可靠的计算方法,用于描述跨膜(TM)结构域残基之间的螺旋间相互作用的强度和化学性质,而这仅凭对结构信息的直观检查是无法确定的。使用片段分子轨道(FMO)量子力学方法分析了代表 A 类 GPCR 家族不同分支的 35 个晶体结构,我们确定了 69 个拓扑等效的 TM 残基,形成了 51 个跨 TM 相互作用的共识网络,提供了与实验数据一致并有助于合理化的新结果。这一发现建立了一个全面的图景,说明特定的分子力如何控制特定的螺旋间相互作用,而这些相互作用反过来又支持 GPCR 的结构稳定性、配体结合和激活。