Suppr超能文献

基于深度学习的腺样体肥大诊断方法。

A deep-learning-based approach for adenoid hypertrophy diagnosis.

机构信息

Center for Biomedical Imaging, University of Science and Technology of China, 230026, Hefei, Anhui, China.

Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China.

出版信息

Med Phys. 2020 Jun;47(5):2171-2181. doi: 10.1002/mp.14063. Epub 2020 Mar 10.

Abstract

PURPOSE

Adenoid hypertrophy is a pathological hyperplasia of adenoids and may cause snoring, apnea, and impede breathing during sleep. In clinical practice, radiologists diagnose the severity of adenoid hypertrophy by measuring the ratio of adenoid width (A) to nasopharyngeal width (N) according to the lateral cephalogram, which indicates the locations of four keypoints. The entire diagnostic process is tedious and time-consuming due to the acquisition of A and N. Thus, there is an urgent need to develop computer-aided diagnostic tools for adenoid hypertrophy.

METHODS

In this paper, we first propose the use of deep learning to solve the problem of adenoid hypertrophy classification. Deep learning driven by big data has developed greatly in the image processing field. However, obtaining a large amount of training data is hard, making the application of deep learning to medical images more difficult. This paper proposes a keypoint localization method to incorporate more prior information to improve the performance of the model under limited data. Furthermore, we design a novel regularized term called VerticalLoss to capture the vertical relationship between keypoints to provide prior information to strengthen the network performance.

RESULTS

To evaluate the performance of our proposed method, we conducted experiments with a clinical dataset from the First Affiliated Hospital of Anhui Medical University consisting of a total of 688 patients. As our results show, we obtained a classification accuracy of 95.6%, a macro F1-score of 0.957, and an average AN ratio error of 0.026. Furthermore, we obtained a macro F1-score of 0.89, a classification accuracy of 94%, and an average AN ratio error of 0.027 while using only half of the data for training.

CONCLUSIONS

The study shows that our proposed method can achieve satisfactory results in the task of adenoid hypertrophy classification. Our approach incorporates more prior information, which is especially important in the field of medical imaging, where it is difficult to obtain large amounts of training data.

摘要

目的

腺样体肥大是一种腺样体的病理性增生,可能导致打鼾、呼吸暂停和睡眠时呼吸受阻。在临床实践中,放射科医生根据侧位头颅侧位片测量腺样体宽度(A)与鼻咽宽度(N)的比值(A/N)来诊断腺样体肥大的严重程度,该比值提示了四个关键点的位置。由于需要获取 A 和 N,整个诊断过程繁琐且耗时。因此,迫切需要开发用于腺样体肥大的计算机辅助诊断工具。

方法

本文首次提出使用深度学习解决腺样体肥大分类问题。在图像处理领域,基于大数据的深度学习得到了极大的发展。然而,获取大量的训练数据是困难的,这使得深度学习在医学图像中的应用更加困难。本文提出了一种关键点定位方法,以纳入更多的先验信息,从而在有限的数据下提高模型的性能。此外,我们设计了一个新的正则化项称为垂直损失(VerticalLoss),以捕获关键点之间的垂直关系,提供先验信息以增强网络性能。

结果

为了评估我们提出的方法的性能,我们使用来自安徽医科大学第一附属医院的临床数据集进行了实验,该数据集共包含 688 名患者。我们的结果表明,我们获得了 95.6%的分类准确率、0.957 的宏 F1 分数和 0.026 的平均 AN 比误差。此外,当仅使用一半的数据进行训练时,我们获得了 0.89 的宏 F1 分数、94%的分类准确率和 0.027 的平均 AN 比误差。

结论

研究表明,我们提出的方法在腺样体肥大分类任务中可以取得令人满意的结果。我们的方法纳入了更多的先验信息,这在医学图像领域尤其重要,因为在该领域很难获取大量的训练数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验