Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
Computer Science School, Wuhan University, Wuhan, Hubei, China.
Am J Orthod Dentofacial Orthop. 2023 Apr;163(4):553-560.e3. doi: 10.1016/j.ajodo.2022.11.011.
This study proposed an automatic diagnosis method based on deep learning for adenoid hypertrophy detection on cone-beam computed tomography.
The hierarchical masks self-attention U-net (HMSAU-Net) for segmentation of the upper airway and the 3-dimensional (3D)-ResNet for diagnosing adenoid hypertrophy were constructed on the basis of 87 cone-beam computed tomography samples. A self-attention encoder module was added to the SAU-Net to optimize upper airway segmentation precision. The hierarchical masks were introduced to ensure that the HMSAU-Net captured sufficient local semantic information.
We used Dice to evaluate the performance of HMSAU-Net and used diagnostic method indicators to test the performance of 3D-ResNet. The average Dice value of our proposed model was 0.960, which was superior to the 3DU-Net and SAU-Net models. In the diagnostic models, 3D-ResNet10 had an excellent ability to diagnose adenoid hypertrophy automatically with a mean accuracy of 0.912, a mean sensitivity of 0.976, a mean specificity of 0.867, a mean positive predictive value of 0.837, a mean negative predictive value of 0.981, and a F1 score of 0.901.
The value of this diagnostic system lies in that it provides a new method for the rapid and accurate early clinical diagnosis of adenoid hypertrophy in children, allows us to look at the upper airway obstruction in three-dimensional space and relieves the work pressure of imaging doctors.
本研究提出了一种基于深度学习的腺样体肥大检测的自动诊断方法,该方法基于 87 例锥形束 CT 样本,构建了用于上气道分割的分层掩模自注意力 U-Net(HMSAU-Net)和用于诊断腺样体肥大的 3D-ResNet。在 SAU-Net 中添加了自注意力编码器模块,以优化上气道分割精度。引入分层掩模,以确保 HMSAU-Net 捕获到足够的局部语义信息。
在 87 例锥形束 CT 样本的基础上,构建了用于上气道分割的分层掩模自注意力 U-Net(HMSAU-Net)和用于诊断腺样体肥大的 3D-ResNet。在 SAU-Net 中添加了自注意力编码器模块,以优化上气道分割精度。引入分层掩模,以确保 HMSAU-Net 捕获到足够的局部语义信息。
我们使用 Dice 评估 HMSAU-Net 的性能,使用诊断方法指标测试 3D-ResNet 的性能。我们提出的模型的平均 Dice 值为 0.960,优于 3DU-Net 和 SAU-Net 模型。在诊断模型中,3D-ResNet10 具有出色的自动诊断腺样体肥大的能力,平均准确率为 0.912,平均敏感度为 0.976,平均特异性为 0.867,平均阳性预测值为 0.837,平均阴性预测值为 0.981,F1 评分为 0.901。
该诊断系统的价值在于为儿童腺样体肥大的快速准确早期临床诊断提供了一种新方法,使我们能够在三维空间观察上气道阻塞,并缓解影像科医生的工作压力。