Suppr超能文献

通过X射线诊断扁桃体和腺样体肥大的优化深度学习模型。

Optimized deep learning model for diagnosing tonsil and adenoid hypertrophy through X-rays.

作者信息

Wu Zhiqing, Zhuo Ran, Yang Yali, Liu Xiaobo, Wu Bin, Wang Jian

机构信息

Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.

Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.

出版信息

Front Oncol. 2025 Mar 11;15:1508525. doi: 10.3389/fonc.2025.1508525. eCollection 2025.

Abstract

OBJECTIVE

To explore the application of a deep learning model based on lateral nasopharyngeal X-rays in diagnosing tonsillar and adenoid hypertrophy.

METHODS

A retrospective study was conducted using DICOM images of lateral nasopharyngeal X-rays from pediatric outpatients aged 2-12 at our hospital from July 2014 to July 2024. The study included patients exhibiting varying degrees of respiratory obstruction symptoms (disease group). Initially, 1006 images were collected, but after excluding low-quality images and standardizing the imaging phase, 819 images remained. These images were divided into training and validation sets in an 8:2 ratio. The independent test set is consisted of 484 images. We delineated the target areas for tonsils and adenoids and used a YOLOv8n-based model for object detection and use various convolutional neural network models to classify the cropped images, assessing the severity of tonsillar and adenoid hypertrophy. We compared the performance of these models on the training and validation sets using metrics such as ROC-AUC, accuracy, precision, recall, and F1 score.

RESULTS

The combined model, incorporating YOLOv8 for object detection and secondary classification, demonstrated excellent performance in diagnosing tonsillar and adenoid hypertrophy, significantly improving diagnostic accuracy and consistency. The ResNet18 model, due to its lightweight nature and minimal computational resource requirements, performed exceptionally well in the YOLOv8-ResNet fusion model for detecting and classifying tonsils and adenoids, making it our preferred model.

CONCLUSION

The deep learning model combining YOLOv8n and ResNet18 based on lateral nasopharyngeal X-rays demonstrates significant advantages in diagnosing pediatric tonsillar and adenoid hypertrophy.

摘要

目的

探讨基于鼻咽侧位X线片的深度学习模型在诊断扁桃体及腺样体肥大中的应用。

方法

采用回顾性研究方法,使用我院2014年7月至2024年7月2至12岁儿科门诊患者的鼻咽侧位X线片的DICOM图像。该研究纳入了表现出不同程度呼吸阻塞症状的患者(疾病组)。最初收集了1006张图像,但在排除低质量图像并对成像阶段进行标准化后,剩余819张图像。这些图像以8:2的比例分为训练集和验证集。独立测试集由484张图像组成。我们勾勒出扁桃体和腺样体的目标区域,并使用基于YOLOv8n的模型进行目标检测,并使用各种卷积神经网络模型对裁剪后的图像进行分类,评估扁桃体和腺样体肥大的严重程度。我们使用ROC-AUC、准确率、精确率、召回率和F1分数等指标比较了这些模型在训练集和验证集上的性能。

结果

结合YOLOv8进行目标检测和二次分类的联合模型在诊断扁桃体和腺样体肥大方面表现出优异的性能,显著提高了诊断准确性和一致性。ResNet18模型由于其轻量级性质和最小的计算资源需求,在YOLOv8-ResNet融合模型中用于检测和分类扁桃体和腺样体时表现出色,使其成为我们的首选模型。

结论

基于鼻咽侧位X线片的结合YOLOv8n和ResNet18的深度学习模型在诊断小儿扁桃体和腺样体肥大方面具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe8/11932914/a1e5e191b26a/fonc-15-1508525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验