Suppr超能文献

基于深度学习的儿童鼻咽侧位X线片中腺样体肥大的自动检测

Automatic detection of adenoid hypertrophy on lateral nasopharyngeal radiographs of children based on deep learning.

作者信息

Guo Wanhong, Gao Yunjian, Yang Yang

机构信息

Department of Otolaryngology, The 983th Hospital of Joint Logistics Support Forces of Chinese PLA, Tianjin, China.

Department of Radiology, Children's Hospital of Soochow University, Suzhou, China.

出版信息

Transl Pediatr. 2024 Aug 31;13(8):1368-1377. doi: 10.21037/tp-24-194. Epub 2024 Aug 28.

Abstract

BACKGROUND

Adenoid hypertrophy is a prevalent cause of upper airway obstruction in children, potentially leading to various otolaryngological complications and even systemic sequelae. The lateral nasopharyngeal radiograph is routinely employed for the diagnosis of adenoid hypertrophy. This study aimed to evaluate the accuracy and reliability of deep learning, using lateral nasopharyngeal radiographs, for the diagnosis of adenoid hypertrophy in pediatric patients.

METHODS

In the retrospective study, the lateral nasopharyngeal X-ray images were collected from children receiving therapy in the Children's Hospital of Soochow University, the 983th Hospital of Joint Logistics Support Forces of Chinese PLA and the Suzhou Wujiang District Children's Hospital from January 2023 to November 2023. Five deep learning models, i.e., AlexNet, VGG16, Inception v3, ResNet50 and DenseNet121, were used for model training and validation. Receiver operating characteristic (ROC) curve analyses were used to evaluate the performance of each model. The best algorithm was compared with interpretations from three radiologists on 208 images in the internal validation group.

RESULTS

The lateral nasopharyngeal X-ray images were collected from 1,188 children, including 705 males (59.3%) and 483 females (40.7%), aged 8 months to 13 years, with a mean age of 5.57±2.66 years. Among the five deep learning models, DenseNet-121 performed the best, with area under the curve (AUC) values of 0.892 and 0.872, with accuracy of 0.895 and 0.878, sensitivity of 0.870 and 0.838, and specificity of 0.913 and 0.906 in the internal and external validation groups, respectively. The diagnostic performance of DenseNet-121 was higher than that of the junior and mid-level radiologists (0.892 0.836, 0.892 0.869), close to the senior radiologist (0.892 0.901). However, Delong's test revealed no significant difference between DenseNet121 and each radiologist in the validation group (P=0.24, P=0.52, P=0.79).

CONCLUSIONS

All the five deep learning models in the study showed good performance for the diagnosis of adenoid hypertrophy, with DenseNet121 being the best, which was clinically relevant for the automatic identification of adenoid hypertrophy.

摘要

背景

腺样体肥大是儿童上呼吸道梗阻的常见原因,可能导致各种耳鼻喉科并发症甚至全身后遗症。鼻咽侧位片常用于腺样体肥大的诊断。本研究旨在评估利用鼻咽侧位片的深度学习技术对儿科患者腺样体肥大诊断的准确性和可靠性。

方法

在这项回顾性研究中,收集了2023年1月至2023年11月期间在苏州大学附属儿童医院、中国人民解放军联勤保障部队第九八三医院和苏州市吴江区儿童医院接受治疗的儿童的鼻咽侧位X线图像。使用了五种深度学习模型,即AlexNet、VGG16、Inception v3、ResNet50和DenseNet121进行模型训练和验证。采用受试者操作特征(ROC)曲线分析来评估每个模型的性能。将最佳算法与三位放射科医生对内部验证组中208张图像的解读进行比较。

结果

共收集了1188名儿童的鼻咽侧位X线图像,其中男性705名(59.3%),女性483名(40.7%),年龄8个月至13岁,平均年龄5.57±2.66岁。在五种深度学习模型中,DenseNet-121表现最佳,在内部和外部验证组中的曲线下面积(AUC)值分别为0.892和0.872,准确率分别为0.895和0.878,灵敏度分别为0.870和0.838,特异性分别为0.913和0.906。DenseNet-121的诊断性能高于初级和中级放射科医生(0.892对0.836、0.892对0.869),接近高级放射科医生(0.892对0.901)。然而,德龙检验显示DenseNet121与验证组中每位放射科医生之间无显著差异(P = 0.24、P = 0.52、P = 0.79)。

结论

本研究中的五种深度学习模型在腺样体肥大诊断方面均表现出良好性能,其中DenseNet121最佳,这对于腺样体肥大的自动识别具有临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/958e/11384431/2be018ec1672/tp-13-08-1368-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验