Bespalov Ivan, Zhang Yu, Haitjema Jarich, Tromp Rudolf M, van der Molen Sense Jan, Brouwer Albert M, Jobst Johannes, Castellanos Sonia
Advanced Research Center for Nanolithography , Science Park 104 , 1098XG Amsterdam , The Netherlands.
Kamerlingh Onnes Laboratory , Leiden University , Niels Bohrweg 2 , 2333 CA Leiden , The Netherlands.
ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9881-9889. doi: 10.1021/acsami.9b19004. Epub 2020 Feb 17.
Extreme ultraviolet (EUV) lithography (13.5 nm) is the newest technology that allows high-throughput fabrication of electronic circuitry in the sub-20 nm scale. It is commonly assumed that low-energy electrons (LEEs) generated in the resist materials by EUV photons are mostly responsible for the solubility switch that leads to nanopattern formation. Yet, reliable quantitative information on this electron-induced process is scarce. In this work, we combine LEE microscopy (LEEM), electron energy loss spectroscopy (EELS), and atomic force microscopy (AFM) to study changes induced by electrons in the 0-40 eV range in thin films of a state-of-the-art molecular organometallic EUV resist known as tin-oxo cage. LEEM-EELS uniquely allows to correct for surface charging and thus to accurately determine the electron landing energy. AFM postexposure analyses revealed that irradiation of the resist with LEEs leads to the densification of the resist layer because of carbon loss. Remarkably, electrons with energies as low as 1.2 eV can induce chemical reactions in the Sn-based resist. Electrons with higher energies are expected to cause electronic excitation or ionization, opening up more pathways to enhanced conversion. However, we do not observe a substantial increase of chemical conversion (densification) with the electron energy increase in the 2-40 eV range. Based on the dose-dependent thickness profiles, a simplified reaction model is proposed where the resist undergoes sequential chemical reactions, first yielding a sparsely cross-linked network and then a more densely cross-linked network. This model allows us to estimate a maximum reaction volume on the initial material of 0.15 nm per incident electron in the energy range studied, which means that about 10 LEEs per molecule on average are needed to turn the material insoluble and thus render a pattern. Our observations are consistent with the observed EUV sensitivity of tin-oxo cages.
极紫外(EUV)光刻技术(13.5纳米)是一项最新技术,能够在低于20纳米的尺度上实现电子电路的高通量制造。人们普遍认为,EUV光子在光刻胶材料中产生的低能电子(LEE)是导致溶解度转变从而形成纳米图案的主要原因。然而,关于这一电子诱导过程的可靠定量信息却很匮乏。在这项工作中,我们结合低能电子显微镜(LEEM)、电子能量损失谱(EELS)和原子力显微镜(AFM),研究了能量在0至40电子伏特范围内的电子对一种名为锡氧笼的先进分子有机金属EUV光刻胶薄膜所引起的变化。LEEM - EELS能够独特地校正表面电荷,从而准确确定电子着陆能量。AFM曝光后分析表明,用LEE辐照光刻胶会由于碳损失导致光刻胶层致密化。值得注意的是,能量低至1.2电子伏特的电子就能在基于锡的光刻胶中引发化学反应。能量较高的电子预计会引起电子激发或电离,从而开辟更多增强转化的途径。然而,在2至40电子伏特范围内,我们并未观察到随着电子能量增加化学转化率(致密化)有显著提高。基于剂量依赖的厚度分布,我们提出了一个简化的反应模型,其中光刻胶经历连续的化学反应,首先形成稀疏交联网络,然后形成更致密的交联网络。该模型使我们能够估计在所研究的能量范围内,每个入射电子在初始材料上的最大反应体积为0.15纳米,这意味着平均每个分子大约需要10个LEE才能使材料不溶,从而形成图案。我们的观察结果与锡氧笼所观察到的EUV灵敏度一致。