Suppr超能文献

跨视网膜色素上皮的液体和溶质转运:一个理论模型。

Fluid and solute transport across the retinal pigment epithelium: a theoretical model.

作者信息

Dvoriashyna Mariia, Foss Alexander J E, Gaffney Eamonn A, Repetto Rodolfo

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.

Department of Ophthalmology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK.

出版信息

J R Soc Interface. 2020 Feb;17(163):20190735. doi: 10.1098/rsif.2019.0735. Epub 2020 Feb 5.

Abstract

The retina is composed of two main layers-the neuroretina and the retinal pigment epithelium (RPE)-that are separated by a potential gap termed the sub-retinal space (SRS). Accumulation of fluid in the SRS may result in a retinal detachment. A key function of the RPE is to prevent fluid accumulation in the SRS by actively pumping fluid from this space to the choroid. We have developed a mathematical model of this process that incorporates the transport of seven chemical species: Na, K, Cl, , H, CO and HCO. This allows us to estimate solute and water fluxes and to understand the role of the different membrane ion channels. We have performed a global sensitivity analysis using the extended Fourier amplitude sensitivity test to investigate the relative importance of parameters in generating the model outputs. The model predicts that flow across the RPE is driven by an osmotic gradient in the cleft gap between adjacent cells. Moreover, the model estimates how water flux is modified in response to inhibition of membrane ion channels and carbonic anhydrase (CA). It provides a possible explanation for how CA inhibitors, which are used clinically to prevent fluid accumulation in the SRS, may be acting.

摘要

视网膜由两个主要层组成——神经视网膜和视网膜色素上皮(RPE),它们之间由一个称为视网膜下间隙(SRS)的潜在间隙分隔。SRS中液体的积聚可能导致视网膜脱离。RPE的一个关键功能是通过将液体从该间隙主动泵入脉络膜来防止SRS中液体的积聚。我们已经开发了一个该过程的数学模型,该模型纳入了七种化学物质的运输:Na、K、Cl、 、H、CO和HCO。这使我们能够估计溶质和水通量,并了解不同膜离子通道的作用。我们使用扩展傅里叶振幅灵敏度测试进行了全局灵敏度分析,以研究参数在生成模型输出中的相对重要性。该模型预测,跨RPE的流动是由相邻细胞之间裂隙间隙中的渗透梯度驱动的。此外,该模型估计了响应膜离子通道和碳酸酐酶(CA)抑制时水通量是如何改变的。它为临床上用于防止SRS中液体积聚的CA抑制剂可能的作用方式提供了一种可能的解释。

相似文献

1
Fluid and solute transport across the retinal pigment epithelium: a theoretical model.
J R Soc Interface. 2020 Feb;17(163):20190735. doi: 10.1098/rsif.2019.0735. Epub 2020 Feb 5.
2
Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: A mathematical model.
J Theor Biol. 2018 Nov 7;456:233-248. doi: 10.1016/j.jtbi.2018.08.009. Epub 2018 Aug 7.
3
CO2-induced ion and fluid transport in human retinal pigment epithelium.
J Gen Physiol. 2009 Jun;133(6):603-22. doi: 10.1085/jgp.200810169.
4
Inhibition of membrane-bound carbonic anhydrase decreases subretinal pH and volume.
Doc Ophthalmol. 1999;97(3-4):261-71. doi: 10.1023/a:1002496223131.
5
Carbonic anhydrase activity is increased in retinal pigmented epithelium and choriocapillaris of RCS rats.
Graefes Arch Clin Exp Ophthalmol. 1996 Apr;234(4):258-63. doi: 10.1007/BF00430419.
6
Active ion transport pathways in the bovine retinal pigment epithelium.
J Physiol. 1990 May;424:283-300. doi: 10.1113/jphysiol.1990.sp018067.
9
Inhibition of membrane-bound carbonic anhydrase enhances subretinal fluid absorption and retinal adhesiveness.
Graefes Arch Clin Exp Ophthalmol. 2000 Jan;238(1):76-80. doi: 10.1007/s004170050013.
10
A model for transepithelial ion transport across the isolated retinal pigment epithelium of the frog.
Exp Eye Res. 1983 Nov;37(5):409-20. doi: 10.1016/0014-4835(83)90016-7.

引用本文的文献

1
A Model of the Mechanisms Underpinning Unconventional Aqueous Humor Outflow.
Invest Ophthalmol Vis Sci. 2025 Apr 1;66(4):75. doi: 10.1167/iovs.66.4.75.
2
All- retinoic acid and fluid transport in myopigenesis.
bioRxiv. 2025 Feb 8:2025.02.05.636685. doi: 10.1101/2025.02.05.636685.
5
Bilateral macular edema secondary to nab-paclitaxel therapy for breast cancer.
Int J Ophthalmol. 2024 Oct 18;17(10):1963-1966. doi: 10.18240/ijo.2024.10.26. eCollection 2024.
6
A Mathematical Model of Interstitial Fluid Flow and Retinal Tissue Deformation in Macular Edema.
Invest Ophthalmol Vis Sci. 2024 Sep 3;65(11):19. doi: 10.1167/iovs.65.11.19.
7
The Ocular Glymphatic System-Current Understanding and Future Perspectives.
Int J Mol Sci. 2024 May 24;25(11):5734. doi: 10.3390/ijms25115734.
8
Drug Distribution After Intravitreal Injection: A Mathematical Model.
Invest Ophthalmol Vis Sci. 2024 Apr 1;65(4):9. doi: 10.1167/iovs.65.4.9.
9
Cell-cell interaction in the pathogenesis of inherited retinal diseases.
Front Cell Dev Biol. 2024 Mar 4;12:1332944. doi: 10.3389/fcell.2024.1332944. eCollection 2024.

本文引用的文献

1
Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: A mathematical model.
J Theor Biol. 2018 Nov 7;456:233-248. doi: 10.1016/j.jtbi.2018.08.009. Epub 2018 Aug 7.
2
Ion channels and transporters of the retinal pigment epithelium.
Exp Eye Res. 2014 Sep;126:27-37. doi: 10.1016/j.exer.2014.05.005.
4
CO2-induced ion and fluid transport in human retinal pigment epithelium.
J Gen Physiol. 2009 Jun;133(6):603-22. doi: 10.1085/jgp.200810169.
5
A methodology for performing global uncertainty and sensitivity analysis in systems biology.
J Theor Biol. 2008 Sep 7;254(1):178-96. doi: 10.1016/j.jtbi.2008.04.011. Epub 2008 Apr 20.
6
Control of chemokine gradients by the retinal pigment epithelium.
Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4620-30. doi: 10.1167/iovs.08-1816. Epub 2008 Apr 30.
7
A mathematical model of fluid secretion from a parotid acinar cell.
J Theor Biol. 2007 Sep 7;248(1):64-80. doi: 10.1016/j.jtbi.2007.04.021. Epub 2007 May 3.
8
Local osmosis and isotonic transport.
J Membr Biol. 2005 Nov;208(1):39-53. doi: 10.1007/s00232-005-0817-9.
9
Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes.
Proc Natl Acad Sci U S A. 2005 May 31;102(22):8030-5. doi: 10.1073/pnas.0503021102. Epub 2005 May 18.
10
A mathematical model of rat distal convoluted tubule. II. Potassium secretion along the connecting segment.
Am J Physiol Renal Physiol. 2005 Oct;289(4):F721-41. doi: 10.1152/ajprenal.00044.2005. Epub 2005 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验