Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
Sci Signal. 2020 Feb 4;13(617):eaax8620. doi: 10.1126/scisignal.aax8620.
The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.
深度测序技术的出现揭示了癌症中 G 蛋白偶联受体 (GPCR) 信号通路的突变比以前认为的更为突出。一个新兴的主题是,与癌症相关的突变往往导致 GPCR 途径的激活增强,从而有利于致癌性。G 蛋白信号调节蛋白 (RGS) 是 GPCR 信号的关键调节剂,通过其 GTPase 加速蛋白 (GAP) 活性来抑制异三聚体 G 蛋白的活性,这种活性由一个保守结构域赋予,称为“RGS 盒”。在这里,我们开发了一个实验管道来系统地评估癌症中 RGS GAP 的突变景观。对具有 GAP 活性的 20 个 RGS 结构域的泛癌症生物信息学分析显示,数百个低频突变分布在保守的 RGS 结构域结构中,在与 G 蛋白相互作用的位置略有富集。我们使用基于酵母的可扩展测定法,对代表所有 RGS GAP 亚家族的多种突变进行了经验测试,并对 G 蛋白界面和非界面位置进行了采样。最后,使用哺乳动物细胞中的 G 蛋白活性生物传感器对一部分突变体进行了验证。我们的研究结果表明,相当一部分 RGS 蛋白突变通过各种机制导致功能丧失,包括破坏 G 蛋白结合界面、丧失蛋白质稳定性或对 G 蛋白偶联的变构效应。此外,我们的结果还验证了用于快速表征 RGS 蛋白中与癌症相关突变的可扩展管道。