Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
Serimmune, 150 Castillian Dr., Goleta, CA, 93117, USA.
Nat Commun. 2020 Feb 4;11(1):690. doi: 10.1038/s41467-020-14495-7.
Epistasis emerges when the effects of an amino acid depend on the identities of interacting residues. This phenomenon shapes fitness landscapes, which have the power to reveal evolutionary paths and inform evolution of desired functions. However, there is a need for easily implemented, high-throughput methods to capture epistasis particularly at distal sites. Here, we combine deep mutational scanning (DMS) with a straightforward data processing step to bridge reads in distal sites within genes (BRIDGE). We use BRIDGE, which matches non-overlapping reads to their cognate templates, to uncover prevalent epistasis within the binding pocket of a human G protein-coupled receptor (GPCR) yielding variants with 4-fold greater affinity to a target ligand. The greatest functional improvements in our screen result from distal substitutions and substitutions that are deleterious alone. Our results corroborate findings of mutational tolerance in GPCRs, even in conserved motifs, but reveal inherent constraints restricting tolerated substitutions due to epistasis.
当氨基酸的影响取决于相互作用的残基的身份时,就会出现上位性。这种现象塑造了适应度景观,具有揭示进化路径和为所需功能的进化提供信息的能力。然而,需要易于实施的高通量方法来捕捉特别是在远端位置的上位性。在这里,我们将深度突变扫描(DMS)与一个简单的数据处理步骤相结合,在基因内的远端位置桥接读取(BRIDGE)。我们使用 BRIDGE 将非重叠的读取与其同源模板匹配,以揭示人类 G 蛋白偶联受体(GPCR)结合口袋内普遍存在的上位性,从而产生对靶配体亲和力增加 4 倍的变体。我们的筛选中最大的功能改进来自于远端取代和单独有害的取代。我们的结果证实了 GPCR 中的突变耐受性发现,即使在保守基序中,也揭示了由于上位性限制耐受取代的固有限制。