Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
Nat Chem Biol. 2022 Sep;18(9):990-998. doi: 10.1038/s41589-022-01064-w. Epub 2022 Jul 14.
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.
基于 RNA 的大分子机器,如核糖体,其功能部分依赖于跨越序列远区的结构相互作用。这些特征限制了突变文库的进化探索,并使三维结构导向的设计复杂化。为了解决这些挑战,我们描述了 Evolink(进化和连接),这是一种能够在大型大分子机器中进行序列远区高通量进化的方法,以及通过计算 RNA 建模指导文库设计,以实现对结构稳定设计的探索。使用 Evolink,我们进化出了一个连接的核糖体,与之前开发的连接核糖体相比,在正交蛋白质翻译中的活性提高了 58%,在 SQ171 细胞中的倍增时间提高了 97%,并揭示了核糖体螺旋中一对具有先前探索过的生物学功能的新允许序列。Evolink 方法可能能够增强大分子机器的工程设计,以实现新的和改进的合成生物学功能。