Leukocyte Signaling Section, Cancer & Inflammation Program, National Cancer Institute, Frederick, MD, USA.
Division of Infection & Immunity, School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff, CF14 4XN, UK.
Nat Commun. 2020 Feb 4;11(1):698. doi: 10.1038/s41467-020-14433-7.
Profound metabolic changes are characteristic of macrophages during classical activation and have been implicated in this phenotype. Here we demonstrate that nitric oxide (NO) produced by murine macrophages is responsible for TCA cycle alterations and citrate accumulation associated with polarization. C tracing and mitochondrial respiration experiments map NO-mediated suppression of metabolism to mitochondrial aconitase (ACO2). Moreover, we find that inflammatory macrophages reroute pyruvate away from pyruvate dehydrogenase (PDH) in an NO-dependent and hypoxia-inducible factor 1α (Hif1α)-independent manner, thereby promoting glutamine-based anaplerosis. Ultimately, NO accumulation leads to suppression and loss of mitochondrial electron transport chain (ETC) complexes. Our data reveal that macrophages metabolic rewiring, in vitro and in vivo, is dependent on NO targeting specific pathways, resulting in reduced production of inflammatory mediators. Our findings require modification to current models of macrophage biology and demonstrate that reprogramming of metabolism should be considered a result rather than a mediator of inflammatory polarization.
经典激活过程中巨噬细胞会发生深刻的代谢变化,这些变化与表型相关。本文中,我们证明了由鼠源巨噬细胞产生的一氧化氮(NO)负责 TCA 循环改变和极化相关的柠檬酸积累。示踪和线粒体呼吸实验将 NO 介导的代谢抑制定位到线粒体三羧酸循环酶 2(ACO2)。此外,我们发现炎症巨噬细胞以一种依赖于 NO 和缺氧诱导因子 1α(Hif1α)的方式将丙酮酸从丙酮酸脱氢酶(PDH)重新定向,从而促进基于谷氨酰胺的回补反应。最终,NO 的积累导致电子传递链(ETC)复合物的抑制和丧失。我们的数据表明,体外和体内的巨噬细胞代谢重编程依赖于针对特定途径的 NO,从而减少炎症介质的产生。我们的研究结果需要对巨噬细胞生物学的现有模型进行修正,并表明代谢重编程应被视为炎症极化的结果,而不是其介导因素。
Cell Rep. 2016-10-11
J Clin Invest. 2015-4
Front Immunol. 2025-8-5
Nat Metab. 2025-8-4
Front Immunol. 2025-7-14
J Clin Invest. 2018-7-30
Redox Biol. 2018-3-9
J Exp Med. 2018-3-6
Cancer Lett. 2018-1-1
Proc Natl Acad Sci U S A. 2017-10-27
Nat Microbiol. 2017-5-15