Suppr超能文献

大肠杆菌K-12中能量与净钾离子转运的偶联

Energy coupling to net K+ transport in Escherichia coli K-12.

作者信息

Rhoads D B, Epstein W

出版信息

J Biol Chem. 1977 Feb 25;252(4):1394-401.

PMID:320207
Abstract

Energy coupling for three K+ transport systems of Escherichia coli K-12 was studied by examining effects of selected energy sources and inhibitors in strains with either a wild type or a defective (Ca2+, Mg2+)-stimulated ATPase. This approach allows discrimination between transport systems coupled to the proton motive force from those coupled to the hydrolysis of a high energy phosphate compound (ATP-driven). The three K+ transport systems here studied are: (a) the Kdp system, a repressible high affinity (Km=2 muM) system probably coded for by four linked Kdp genes; (b) the Trka system, a constitutive system with high rate and modest affinity (Km=1.5 mM) defined by mutations in the single trkA gene; and (c) the TrkF system, a nonsaturable system with a low rate of uptake (Rhoads, D.B., Waters, F.B., and Epstein, W. (1976) J. Gen. Physiol. 67, 325-341). Each of these systems has a different mode of energy coupling: (a) the Kdp system is ATP-driven and has a periplasmic protein component; (b) the TrkF system is proton motive force-driven; and (c) the TrkA system is unique among bacterial transport systems described to date in requiring both the proton motive force and ATP for activity. We suggest that this dual requirement represents energy fueling by ATP and regulation by the proton motive force. Absence of ATP-driven systems in membrane vesicles is usually attributed to the requirement of such systems for a periplasmic protein. This cannot explain the failure to demonstrate the TrkA system in vesicles, since this system does not require a periplasmic protein. Our findings indicate that membrane vesicles cannot couple energy to ATP-driven transport systems. Since vesicles can generate a proton motive force, the inability of vesicles to generate ATP or couple ATP to transport (or both) must be invoked to explain the absence of TrkA in vesicles. The TrkF system should function in vesicles, but its very low rate may make it difficult to identify.

摘要

通过检测选定能源和抑制剂对野生型或有缺陷的(Ca2 +,Mg2 +)刺激型ATP酶菌株的影响,研究了大肠杆菌K - 12三种钾离子转运系统的能量偶联。这种方法能够区分与质子动力相关的转运系统和与高能磷酸化合物水解(ATP驱动)相关的转运系统。这里研究的三种钾离子转运系统是:(a)Kdp系统,一种可阻遏的高亲和力(Km = 2 μM)系统,可能由四个连锁的Kdp基因编码;(b)Trka系统,一种组成型系统,速率高且亲和力适中(Km = 1.5 mM),由单个trkA基因突变定义;(c)TrkF系统,一种非饱和系统,摄取速率低(罗兹,D.B.,沃特斯,F.B.,和爱泼斯坦,W.(1976年)《普通生理学杂志》67卷,325 - 341页)。这些系统中的每一个都有不同的能量偶联模式:(a)Kdp系统由ATP驱动,有一个周质蛋白成分;(b)TrkF系统由质子动力驱动;(c)TrkA系统在迄今为止描述的细菌转运系统中是独特的,其活性需要质子动力和ATP两者。我们认为这种双重需求代表了ATP提供能量和质子动力进行调节。膜囊泡中缺乏ATP驱动系统通常归因于此类系统对周质蛋白的需求。这无法解释在囊泡中未能证明TrkA系统的情况,因为该系统不需要周质蛋白。我们的研究结果表明,膜囊泡不能将能量与ATP驱动的转运系统偶联。由于囊泡可以产生质子动力,所以必须调用囊泡无法产生ATP或将ATP与转运偶联(或两者皆不能)来解释囊泡中TrkA的缺失。TrkF系统应该在囊泡中起作用,但其极低的速率可能使其难以识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验