Bocchini Peter J, Sudbrack Chantal K, Noebe Ronald D, Dunand David C, Seidman David N
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA.
NASA Glenn Research Center, Materials and Structures Division, 21000 Brookpark Rd., Cleveland, Ohio 44135, USA.
Mater Sci Eng A Struct Mater. 2016 Nov 11;682:260-269. doi: 10.1016/j.msea.2016.10.124.
The effects of micro-additions of boron and zirconium on grain-boundary (GB) structure and strength in polycrystalline γ(f.c.c.) plus γ'(L1) strengthened Co-9.5Al-7.5W-X at. % alloys (X = 0-Temary, 0.05B, 0.01B, 0.05Zr, and 0.005B-0.05Zr at. %) are studied. Creep tests performed at 850 °C demonstrate that GB strength and cohesion limit the creep resistance and ductility of the ternary B- and Zr-free alloy due to intergranular fracture. Alloys with 0.05B and 0.005B-0.05Zr both exhibit improved creep strength due to enhanced GB cohesion, compared to the baseline ternary Co-9.5Al-7.5W alloy, but alloys containing 0.01B or 0.05Zr additions displayed no benefit. Atom-probe tomography is utilized to measure GB segregation, where B and Zr are demonstrated to segregate at GBs. A Gibbsian interfacial excess of 5.57 ± 1.04 atoms nm was found for B at a GB in the 0.01B alloy and 2.88 ± 0.81 and 2.40 ± 0.84 atoms nm for B and Zr, respectively, for the 0.005B-0.05Zr alloy. The GBs in the highest B-containing (0.05B) alloy exhibit micrometer-sized boride precipitates with adjacent precipitate denuded-zones (PDZs), whereas secondary precipitation at the GBs is not present in the other four alloys. The 0.05B alloy has the smallest room temperature yield strength, by 6 %, which is attributed to the PDZs, but it exhibits the largest increase in creep strength (with an ~2.5 order of magnitude decrease in the minimum strain rate for a given stress at 850 °C) over the baseline Co-9.5Al-7.5W alloy.
研究了微量硼和锆对多晶γ(面心立方)+γ'(L12)强化的Co-9.5Al-7.5W-X原子百分比合金(X = 0-三元系、0.05B、0.01B、0.05Zr以及0.005B-0.05Zr原子百分比)中晶界(GB)结构和强度的影响。在850°C下进行的蠕变试验表明,由于沿晶断裂,晶界强度和内聚力限制了不含硼和锆的三元合金的抗蠕变性和延展性。与基准三元Co-9.5Al-7.5W合金相比,含0.05B和0.005B-0.05Zr的合金均因晶界内聚力增强而表现出改善的蠕变强度,但添加0.01B或0.05Zr的合金未显示出益处。利用原子探针断层扫描技术测量晶界偏析,结果表明硼和锆在晶界处发生偏析。在0.01B合金的晶界处发现硼的吉布斯界面过剩为5.57±1.04个原子/纳米,在0.005B-0.05Zr合金中,硼和锆的吉布斯界面过剩分别为2.88±0.81和2.40±0.84个原子/纳米。含硼量最高(0.05B)的合金中的晶界呈现出微米级硼化物析出物以及相邻的析出物贫化区(PDZ),而其他四种合金的晶界处不存在二次析出。0.05B合金的室温屈服强度最小,降低了6%,这归因于析出物贫化区,但与基准Co-9.5Al-7.5W合金相比,它在蠕变强度方面的增幅最大(在850°C下给定应力下的最小应变速率降低了约2.5个数量级)。