Suppr超能文献

通过线性机器学习研究2-亚氨基-1,10-菲咯啉铁/钴配合物的催化活性

Catalytic Activity of 2-Imino-1,10-phenthrolyl Fe/Co Complexes via Linear Machine Learning.

作者信息

Sadiq Zubair, Yang Wenhong, Meraz Md Mostakim, Yang Weisheng, Sun Wen-Hua

机构信息

Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Molecules. 2024 May 15;29(10):2313. doi: 10.3390/molecules29102313.

Abstract

In anticipation of the correlations between catalyst structures and their properties, the catalytic activities of 2-imino-1,10-phenanthrolyl iron and cobalt metal complexes are quantitatively investigated via linear machine learning (ML) algorithms. Comparatively, the Ridge Regression model has captured more robust predictive performance compared with other linear algorithms, with a correlation coefficient value of 0.952 and a cross-validation value of 0.871. It shows that different algorithms select distinct types of descriptors, depending on the importance of descriptors. Through the interpretation of the model, the catalytic activity is potentially related to the steric effect of substituents and negative charged groups. This study refines descriptor selection for accurate modeling, providing insights into the variation principle of catalytic activity.

摘要

鉴于催化剂结构与其性能之间的相关性,通过线性机器学习(ML)算法对2-亚氨基-1,10-菲咯啉铁和钴金属配合物的催化活性进行了定量研究。相比之下,岭回归模型与其他线性算法相比具有更强的预测性能,相关系数值为0.952,交叉验证值为0.871。结果表明,不同的算法根据描述符的重要性选择不同类型的描述符。通过对模型的解释,催化活性可能与取代基的空间效应和带负电荷的基团有关。本研究优化了描述符选择以进行准确建模,为催化活性的变化原理提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94a4/11124342/1d642d024e59/molecules-29-02313-sch001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验