文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心血管医学中的机器智能

Machine Intelligence in Cardiovascular Medicine.

作者信息

Miller D Douglas

机构信息

From the Department of Medicine, Radiology and Population Health Sciences, Medical College of Georgia, Augusta, GA.

出版信息

Cardiol Rev. 2020 Mar/Apr;28(2):53-64. doi: 10.1097/CRD.0000000000000294.


DOI:10.1097/CRD.0000000000000294
PMID:32022759
Abstract

The computer science technology trend called artificial intelligence (AI) is not new. Both machine learning and deep learning AI applications have recently begun to impact cardiovascular medicine. Scientists working in the AI domain have long recognized the importance of data quality and provenance to AI algorithm efficiency and accuracy. A diverse array of cardiovascular raw data sources of variable quality-electronic medical records, radiological picture archiving and communication systems, laboratory results, omics, etc.-are available to train AI algorithms for predictive modeling of clinical outcomes (in-hospital mortality, acute coronary syndrome risk stratification, etc.), accelerated image interpretation (edge detection, tissue characterization, etc.) and enhanced phenotyping of heterogeneous conditions (heart failure with preserved ejection fraction, hypertension, etc.). A number of software as medical device narrow AI products for cardiac arrhythmia characterization and advanced image deconvolution are now Food and Drug Administration approved, and many others are in the pipeline. Present and future health professionals using AI-infused analytics and wearable devices have 3 critical roles to play in their informed development and ethical application in practice: (1) medical domain experts providing clinical context to computer and data scientists, (2) data stewards assuring the quality, relevance and provenance of data inputs, and (3) real-time and post-hoc interpreters of AI black box solutions and recommendations to patients. The next wave of so-called contextual adaption AI technologies will more closely approximate human decision-making, potentially augmenting cardiologists' real-time performance in emergency rooms, catheterization laboratories, imaging suites, and clinics. However, before such higher order AI technologies are adopted in the clinical setting and by healthcare systems, regulatory agencies, and industry must jointly develop robust AI standards of practice and transparent technology insertion rule sets.

摘要

被称为人工智能(AI)的计算机科学技术趋势并不新鲜。机器学习和深度学习人工智能应用最近都已开始对心血管医学产生影响。从事人工智能领域研究的科学家们早就认识到数据质量和来源对人工智能算法效率和准确性的重要性。有各种各样质量参差不齐的心血管原始数据来源——电子病历、放射影像存档与通信系统、实验室检查结果、组学等——可用于训练人工智能算法,以对临床结局(院内死亡率、急性冠脉综合征风险分层等)进行预测建模、加速图像解读(边缘检测、组织特征分析等)以及增强对异质性疾病(射血分数保留的心力衰竭、高血压等)的表型分析。现在,一些作为医疗设备的狭义人工智能产品,用于心律失常特征分析和先进图像反卷积,已获得美国食品药品监督管理局的批准,还有许多其他产品也在研发中。当下及未来使用融入人工智能的分析方法和可穿戴设备的医疗专业人员,在其明智的开发和实际的道德应用方面可发挥三个关键作用:(1)医学领域专家为计算机科学家和数据科学家提供临床背景;(2)数据管理员确保数据输入的质量、相关性和来源;(3)人工智能黑箱解决方案的实时和事后解释者,并向患者提供建议。下一波所谓的情境自适应人工智能技术将更接近人类决策,有可能增强心脏病专家在急诊室、导管室、影像科室和诊所的实时表现。然而,在临床环境以及医疗保健系统采用此类高阶人工智能技术之前,监管机构、行业必须共同制定强有力的人工智能实践标准和透明的技术引入规则集。

相似文献

[1]
Machine Intelligence in Cardiovascular Medicine.

Cardiol Rev. 2020

[2]
Application of Artificial Intelligence in Acute Coronary Syndrome: A Brief Literature Review.

Adv Ther. 2021-10

[3]
Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance.

JACC Cardiovasc Interv. 2019-7-22

[4]
Feasibility of artificial intelligence its current status, clinical applications, and future direction in cardiovascular disease.

Curr Probl Cardiol. 2024-2

[5]
Implementing Artificial Intelligence and Digital Health in Resource-Limited Settings? Top 10 Lessons We Learned in Congenital Heart Defects and Cardiology.

OMICS. 2020-5

[6]
Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases.

J Electrocardiol. 2024

[7]
The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology.

Can J Cardiol. 2022-2

[8]
A Primer on the Present State and Future Prospects for Machine Learning and Artificial Intelligence Applications in Cardiology.

Can J Cardiol. 2022-2

[9]
Artificial Intelligence as a Business Partner in Cardiovascular Precision Medicine: An Emerging Approach for Disease Detection and Treatment Optimization.

Curr Med Chem. 2021

[10]
Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.

J Med Imaging Radiat Sci. 2019-12

引用本文的文献

[1]
Artificial Intelligence-Based Software as a Medical Device (AI-SaMD): A Systematic Review.

Healthcare (Basel). 2025-4-3

[2]
Trustworthy and ethical AI-enabled cardiovascular care: a rapid review.

BMC Med Inform Decis Mak. 2024-9-4

[3]
Innovation and challenges of artificial intelligence technology in personalized healthcare.

Sci Rep. 2024-8-16

[4]
The ethical aspects of exposome research: a systematic review.

Exposome. 2023-4-12

[5]
Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects.

Sensors (Basel). 2023-8-3

[6]
Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve.

J Cardiovasc Dev Dis. 2023-2-9

[7]
Research output of artificial intelligence in arrhythmia from 2004 to 2021: a bibliometric analysis.

J Thorac Dis. 2022-5

[8]
Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model.

Front Cardiovasc Med. 2021-12-23

[9]
When a Diagnosis Has No Name: Uncertainty and Opportunity.

ACR Open Rheumatol. 2022-3

[10]
What Makes Artificial Intelligence Exceptional in Health Technology Assessment?

Front Artif Intell. 2021-11-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索