Suppr超能文献

2004年至2021年人工智能在心律失常领域的研究产出:一项文献计量分析

Research output of artificial intelligence in arrhythmia from 2004 to 2021: a bibliometric analysis.

作者信息

Huang Junlin, Liu Yang, Huang Shuping, Ke Guibao, Chen Xin, Gong Bei, Wei Wei, Xue Yumei, Deng Hai, Wu Shulin

机构信息

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China.

出版信息

J Thorac Dis. 2022 May;14(5):1411-1427. doi: 10.21037/jtd-21-1767.

Abstract

BACKGROUND

With the advancement in machine learning (ML) and artificial neural networks as well as the development of portable electrocardiogram devices, artificial intelligence (AI) has been increasing in popularity over the years. In this study, we aimed to provide an overview of the research regarding the utilization of AI techniques to improve the diagnosis of arrhythmia.

METHODS

We extracted data published 2004 to 2021 from Web of Science database. The online analytic platform, Literature Metrology (http://bibliometric.com), was used to analyze publication trends, including information about journals, authors, institutions, collaborations between countries, citations, and keywords.

RESULTS

Keywords, such as deep learning, electrocardiogram (ECG), and convolutional neural network, have been increasing in frequency over the years. The analysis outcomes demonstrated that topics associated with AI, robotic prosthesis, and big data analysis for arrhythmia have become increasingly popular since 2016. Our study also found that atrial fibrillation (AF) and ventricular arrhythmia were the two ECG signal sharing the most interest.

CONCLUSIONS

The utility of deep learning in diagnostics and the prognostication of arrhythmia has been gaining traction over the years, covering areas from electrocardiogram detection to atrial arrhythmogenesis model construction. Our study revealed the trend of topics from 2004 to 2021, which may help researchers to monitor future trends.

摘要

背景

随着机器学习(ML)和人工神经网络的发展以及便携式心电图设备的开发,近年来人工智能(AI)越来越受欢迎。在本研究中,我们旨在概述利用AI技术改善心律失常诊断的相关研究。

方法

我们从科学网数据库中提取了2004年至2021年发表的数据。使用在线分析平台文献计量学(http://bibliometric.com)分析发表趋势,包括期刊、作者、机构、国家间合作、引用和关键词等信息。

结果

近年来,深度学习、心电图(ECG)和卷积神经网络等关键词的出现频率不断增加。分析结果表明,自2016年以来,与AI、机器人假体和心律失常大数据分析相关的主题越来越受欢迎。我们的研究还发现,心房颤动(AF)和室性心律失常是最受关注的两种心电图信号。

结论

近年来,深度学习在心律失常诊断和预后评估中的应用越来越受到关注,涵盖了从心电图检测到心房心律失常发生模型构建等领域。我们的研究揭示了2004年至2021年的主题趋势,这可能有助于研究人员监测未来趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c42f/9186255/2949f7fe5eb5/jtd-14-05-1411-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验