Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA.
Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA.
Cell Rep. 2020 Feb 4;30(5):1417-1433.e7. doi: 10.1016/j.celrep.2020.01.013.
Reactive oxygen species (ROS) play critical roles in metabolism and disease, yet a comprehensive analysis of the cellular response to oxidative stress is lacking. To systematically identify regulators of oxidative stress, we conducted genome-wide Cas9/CRISPR and shRNA screens. This revealed a detailed picture of diverse pathways that control oxidative stress response, ranging from the TCA cycle and DNA repair machineries to iron transport, trafficking, and metabolism. Paradoxically, disrupting the pentose phosphate pathway (PPP) at the level of phosphogluconate dehydrogenase (PGD) protects cells against ROS. This dramatically alters metabolites in the PPP, consistent with rewiring of upper glycolysis to promote antioxidant production. In addition, disruption of peroxisomal import unexpectedly increases resistance to oxidative stress by altering the localization of catalase. Together, these studies provide insights into the roles of peroxisomal matrix import and the PPP in redox biology and represent a rich resource for understanding the cellular response to oxidative stress.
活性氧(ROS)在代谢和疾病中起着关键作用,但对细胞对氧化应激的反应缺乏全面分析。为了系统地鉴定氧化应激的调节剂,我们进行了全基因组 Cas9/CRISPR 和 shRNA 筛选。这揭示了控制氧化应激反应的各种途径的详细情况,从三羧酸 (TCA) 循环和 DNA 修复机制到铁运输、运输和代谢。矛盾的是,在磷酸葡萄糖酸脱氢酶 (PGD) 水平上破坏磷酸戊糖途径 (PPP)可保护细胞免受 ROS 侵害。这极大地改变了 PPP 中的代谢物,与重新布线的上糖酵解以促进抗氧化剂的产生一致。此外,过氧化物酶体导入的破坏通过改变过氧化氢酶的定位出人意料地增加了对氧化应激的抵抗力。总之,这些研究为过氧化物酶体基质导入和 PPP 在氧化还原生物学中的作用提供了深入的了解,并为理解细胞对氧化应激的反应提供了丰富的资源。