Suppr超能文献

Ag作为CeO量子点/Ag/AgSe Z型异质结中的助催化剂和电子-空穴介质增强了光电极的光电催化性能。

Ag as Cocatalyst and Electron-Hole Medium in CeO QDs/Ag/AgSe Z-scheme Heterojunction Enhanced the Photo-Electrocatalytic Properties of the Photoelectrode.

作者信息

Li Lingwei, Feng Hange, Wei Xiaofan, Jiang Kun, Xue Shaolin, Chu Paul K

机构信息

College of Science, Donghua University, Shanghai 201620, China.

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

出版信息

Nanomaterials (Basel). 2020 Jan 31;10(2):253. doi: 10.3390/nano10020253.

Abstract

A recyclable photoelectrode with high degradation capability for organic pollutants is crucial for environmental protection and, in this work, a novel CeO quantum dot (QDs)/AgSe Z-scheme photoelectrode boasting increased visible light absorption and fast separation and transfer of photo-induced carriers is prepared and demonstrated. A higher voltage increases the photocurrent and 95.8% of tetracycline (TC) is degraded by 10% CeO QDs/AgSe in 75 minutes. The degradation rate is superior to that achieved by photocatalysis (92.3% of TC in 90 min) or electrocatalysis (27.7% of TC in 90 min). Oxygen vacancies on the CeO QDs advance the separation and transfer of photogenerated carriers at the interfacial region. Free radical capture tests demonstrate that •O, •OH, and h are the principal active substances and, by also considering the bandgaps of CeO QDs and AgSe, the photocatalytic mechanism of CeO QDs/AgSe abides by the Z-scheme rather than the traditional heterojunction scheme. A small amount of metallic Ag formed in the photocatalysis process can form a high-speed charge transfer nano channel, which can greatly inhibit the photogenerated carrier recombination, improve the photocatalytic performance, and help form a steady Z-scheme photocatalysis system. This study would lay a foundation for the design of a Z-scheme solar photocatalytic system.

摘要

一种对有机污染物具有高降解能力的可回收光电极对于环境保护至关重要。在这项工作中,制备并展示了一种新型的CeO量子点(QDs)/AgSe Z型光电极,其具有增强的可见光吸收以及光生载流子的快速分离和转移能力。更高的电压会增加光电流,10%的CeO量子点/AgSe在75分钟内可降解95.8%的四环素(TC)。其降解率优于光催化(90分钟内降解92.3%的TC)或电催化(90分钟内降解27.7%的TC)所达到的降解率。CeO量子点上的氧空位促进了界面区域光生载流子的分离和转移。自由基捕获测试表明,•O、•OH和h是主要的活性物质,同时考虑到CeO量子点和AgSe的带隙,CeO量子点/AgSe的光催化机理遵循Z型而不是传统的异质结型。在光催化过程中形成的少量金属Ag可以形成高速电荷转移纳米通道,这可以极大地抑制光生载流子的复合,提高光催化性能,并有助于形成稳定的Z型光催化体系。本研究将为Z型太阳能光催化体系的设计奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2e/7075152/428affb69c3f/nanomaterials-10-00253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验