Suppr超能文献

Dissociation of temperature-gradient and evaporative heat loss during cold gas hyperventilation in cold-induced asthma.

作者信息

Ingenito E, Solway J, Lafleur J, Lombardo A, Drazen J M, Pichurko B

机构信息

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

出版信息

Am Rev Respir Dis. 1988 Sep;138(3):540-6. doi: 10.1164/ajrccm/138.3.540.

Abstract

We examined temperature-gradient and evaporative energy losses during cold gas inhalation challenges in patients with exercise-induced asthma by using gases with similar water-carrying capacities but significantly different volume heat capacities. Seven subjects were asked to hyperventilate mixtures of 80% helium/20% oxygen (HeO2) or 80% sulfur hexafluoride/20% oxygen (SF6O2) for 5 min at a fixed target minute ventilation of 20 x FEV1 and an inspired gas temperature of 0 degrees C. Each subject equilibrated his or her lungs with the appropriate gas mixture prior to testing: PETCO2 and FIO2 were monitored and maintained at constant values (CO2 = 0.05; O2 = 0.20) by CO2 scrubbing and addition of compressed gas to the system. Gas composition, inspired and expired flow rates, and gas temperatures at the airway opening were recorded in real time using a computer-based data collection system that calculated respiratory heat loss on a per breath basis. Bronchoconstriction was quantitated using specific airway conductance measured before and serially after each challenge. The degree of bronchoconstriction correlated closely with evaporative respiratory heat loss (r = 0.658 p less than 0.05), but poorly with both temperature-gradient (r = 0.114, p greater than 0.20) and total (r = 0.268, p greater than 0.15) heat loss. These findings suggest that total respiratory heat loss is not the primary stimulus in exercise-induced asthma, and further suggest that total water loss, or focal heat/water loss, may be important in inducing bronchospasm in this subset of asthmatics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验